Simulation and Analysis of Morphing Blades applied to a Vertical Axis Wind Turbine
Supervisor(es): Paraschivoiu, Marius
Resumen:
This study compares the performance of a Vertical Axis Wind Turbine with and without using morphing capabilities applied to its blades. It also explores the feasibility of applying moving mesh to model the morphing capability inside the software package STAR CCM+© in order to use Computational Fluid Dynamics (CFD) to analyze the flow’s behavior. Particularly it is important to capture the presence of dynamic stall and vortex shedding at certain regions over the blade’s path, which are associated with a decreased in the overall power coefficient. This work developed a methodology to analyze these morphing capabilities when applied over airfoils in 2D simulations, by using a combination of overset meshes and the morphing approach. The accuracy is verified by creating a baseline scenario and compare it against a benchmark case, while also testing for grid and time step sensitivity. The use of Reynold Averaged Navier Stokes equations was chosen, with Menter’s SST k-omega as the turbulence model. Afterward, a maximum power coefficient curve was plotted by testing three airfoil’s shapes as references, one forming the baseline case, while the other two delimiting the maximum deformation, marked as outward and inward cases. A final optimized case was tested, where the morphing was applied to strategic regions where the dynamic stall was highest, and where the shapes could ensure the maximum possible power output. This resulted in an improvement of 46.2% of the overall power coefficient.
2020 | |
Agencia Nacional de Investigación e Innovación | |
Energía eólica Viento Turbina CFD Simulation Wind Turbine Ingeniería y Tecnología Ingeniería Mecánica |
|
Inglés | |
Agencia Nacional de Investigación e Innovación | |
REDI | |
http://hdl.handle.net/20.500.12381/224 | |
Acceso abierto | |
Reconocimiento 4.0 Internacional. (CC BY) |
_version_ | 1814959258203062272 |
---|---|
author | Leonczuk Minetto, Robert Alexis |
author_facet | Leonczuk Minetto, Robert Alexis |
author_role | author |
bitstream.checksum.fl_str_mv | 2d97768b1a25a7df5a347bb58fd2d77f a1bf671e2453882c67e63e2dfd2468cc |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 |
bitstream.url.fl_str_mv | https://redi.anii.org.uy/jspui/bitstream/20.500.12381/224/2/license.txt https://redi.anii.org.uy/jspui/bitstream/20.500.12381/224/1/Leonczuk_MASc_S2020.pdf |
collection | REDI |
dc.creator.advisor.none.fl_str_mv | Paraschivoiu, Marius |
dc.creator.none.fl_str_mv | Leonczuk Minetto, Robert Alexis |
dc.date.accessioned.none.fl_str_mv | 2020-02-26T15:08:14Z |
dc.date.available.none.fl_str_mv | 2020-02-26T15:08:14Z |
dc.date.issued.none.fl_str_mv | 2020-01 |
dc.description.abstract.none.fl_txt_mv | This study compares the performance of a Vertical Axis Wind Turbine with and without using morphing capabilities applied to its blades. It also explores the feasibility of applying moving mesh to model the morphing capability inside the software package STAR CCM+© in order to use Computational Fluid Dynamics (CFD) to analyze the flow’s behavior. Particularly it is important to capture the presence of dynamic stall and vortex shedding at certain regions over the blade’s path, which are associated with a decreased in the overall power coefficient. This work developed a methodology to analyze these morphing capabilities when applied over airfoils in 2D simulations, by using a combination of overset meshes and the morphing approach. The accuracy is verified by creating a baseline scenario and compare it against a benchmark case, while also testing for grid and time step sensitivity. The use of Reynold Averaged Navier Stokes equations was chosen, with Menter’s SST k-omega as the turbulence model. Afterward, a maximum power coefficient curve was plotted by testing three airfoil’s shapes as references, one forming the baseline case, while the other two delimiting the maximum deformation, marked as outward and inward cases. A final optimized case was tested, where the morphing was applied to strategic regions where the dynamic stall was highest, and where the shapes could ensure the maximum possible power output. This resulted in an improvement of 46.2% of the overall power coefficient. |
dc.description.sponsorship.none.fl_txt_mv | Agencia Nacional de Investigación e Innovación |
dc.format.extent.es.fl_str_mv | 81 p. |
dc.identifier.anii.es.fl_str_mv | POS_IDRC_2016_1_131182 |
dc.identifier.uri.none.fl_str_mv | http://hdl.handle.net/20.500.12381/224 |
dc.language.iso.none.fl_str_mv | eng |
dc.publisher.es.fl_str_mv | Concordia University |
dc.rights.es.fl_str_mv | Acceso abierto |
dc.rights.license.none.fl_str_mv | Reconocimiento 4.0 Internacional. (CC BY) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:REDI instname:Agencia Nacional de Investigación e Innovación instacron:Agencia Nacional de Investigación e Innovación |
dc.subject.anii.es.fl_str_mv | Ingeniería y Tecnología Ingeniería Mecánica |
dc.subject.es.fl_str_mv | Energía eólica Viento Turbina CFD Simulation Wind Turbine |
dc.title.none.fl_str_mv | Simulation and Analysis of Morphing Blades applied to a Vertical Axis Wind Turbine |
dc.type.es.fl_str_mv | Tesis de maestría |
dc.type.none.fl_str_mv | info:eu-repo/semantics/masterThesis |
dc.type.version.es.fl_str_mv | Aceptado |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/acceptedVersion |
description | This study compares the performance of a Vertical Axis Wind Turbine with and without using morphing capabilities applied to its blades. It also explores the feasibility of applying moving mesh to model the morphing capability inside the software package STAR CCM+© in order to use Computational Fluid Dynamics (CFD) to analyze the flow’s behavior. Particularly it is important to capture the presence of dynamic stall and vortex shedding at certain regions over the blade’s path, which are associated with a decreased in the overall power coefficient. This work developed a methodology to analyze these morphing capabilities when applied over airfoils in 2D simulations, by using a combination of overset meshes and the morphing approach. The accuracy is verified by creating a baseline scenario and compare it against a benchmark case, while also testing for grid and time step sensitivity. The use of Reynold Averaged Navier Stokes equations was chosen, with Menter’s SST k-omega as the turbulence model. Afterward, a maximum power coefficient curve was plotted by testing three airfoil’s shapes as references, one forming the baseline case, while the other two delimiting the maximum deformation, marked as outward and inward cases. A final optimized case was tested, where the morphing was applied to strategic regions where the dynamic stall was highest, and where the shapes could ensure the maximum possible power output. This resulted in an improvement of 46.2% of the overall power coefficient. |
eu_rights_str_mv | openAccess |
format | masterThesis |
id | REDI_13570d33fac7346ad5e2cd30f4db25b8 |
identifier_str_mv | POS_IDRC_2016_1_131182 |
instacron_str | Agencia Nacional de Investigación e Innovación |
institution | Agencia Nacional de Investigación e Innovación |
instname_str | Agencia Nacional de Investigación e Innovación |
language | eng |
network_acronym_str | REDI |
network_name_str | REDI |
oai_identifier_str | oai:redi.anii.org.uy:20.500.12381/224 |
publishDate | 2020 |
reponame_str | REDI |
repository.mail.fl_str_mv | jmaldini@anii.org.uy |
repository.name.fl_str_mv | REDI - Agencia Nacional de Investigación e Innovación |
repository_id_str | 9421 |
rights_invalid_str_mv | Reconocimiento 4.0 Internacional. (CC BY) Acceso abierto |
spelling | Reconocimiento 4.0 Internacional. (CC BY)Acceso abiertoinfo:eu-repo/semantics/openAccess2020-02-26T15:08:14Z2020-02-26T15:08:14Z2020-01http://hdl.handle.net/20.500.12381/224POS_IDRC_2016_1_131182This study compares the performance of a Vertical Axis Wind Turbine with and without using morphing capabilities applied to its blades. It also explores the feasibility of applying moving mesh to model the morphing capability inside the software package STAR CCM+© in order to use Computational Fluid Dynamics (CFD) to analyze the flow’s behavior. Particularly it is important to capture the presence of dynamic stall and vortex shedding at certain regions over the blade’s path, which are associated with a decreased in the overall power coefficient. This work developed a methodology to analyze these morphing capabilities when applied over airfoils in 2D simulations, by using a combination of overset meshes and the morphing approach. The accuracy is verified by creating a baseline scenario and compare it against a benchmark case, while also testing for grid and time step sensitivity. The use of Reynold Averaged Navier Stokes equations was chosen, with Menter’s SST k-omega as the turbulence model. Afterward, a maximum power coefficient curve was plotted by testing three airfoil’s shapes as references, one forming the baseline case, while the other two delimiting the maximum deformation, marked as outward and inward cases. A final optimized case was tested, where the morphing was applied to strategic regions where the dynamic stall was highest, and where the shapes could ensure the maximum possible power output. This resulted in an improvement of 46.2% of the overall power coefficient.Agencia Nacional de Investigación e Innovación81 p.engConcordia UniversityEnergía eólicaVientoTurbinaCFDSimulationWindTurbineIngeniería y TecnologíaIngeniería MecánicaSimulation and Analysis of Morphing Blades applied to a Vertical Axis Wind TurbineTesis de maestríaAceptadoinfo:eu-repo/semantics/acceptedVersioninfo:eu-repo/semantics/masterThesisreponame:REDIinstname:Agencia Nacional de Investigación e Innovacióninstacron:Agencia Nacional de Investigación e InnovaciónLeonczuk Minetto, Robert AlexisParaschivoiu, MariusLICENSElicense.txtlicense.txttext/plain; charset=utf-84746https://redi.anii.org.uy/jspui/bitstream/20.500.12381/224/2/license.txt2d97768b1a25a7df5a347bb58fd2d77fMD52ORIGINALLeonczuk_MASc_S2020.pdfLeonczuk_MASc_S2020.pdfTesis de maestríaapplication/pdf3592834https://redi.anii.org.uy/jspui/bitstream/20.500.12381/224/1/Leonczuk_MASc_S2020.pdfa1bf671e2453882c67e63e2dfd2468ccMD5120.500.12381/2242020-09-18 11:50:20.808oai:redi.anii.org.uy:20.500.12381/224PHA+QWNlcHRhbmRvIGxhIGNlc2nDs24gZGUgZGVyZWNob3MgZWwgdXN1YXJpbyBERUNMQVJBIHF1ZSBvc3RlbnRhIGxhIGNvbmRpY2nDs24gZGUgYXV0b3IgZW4gZWwgc2VudGlkbyBxdWUgb3RvcmdhIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlIHNvYnJlICBwcm9waWVkYWQgaW50ZWxlY3R1YWwgZGUgbGEgb2JyYSBvcmlnaW5hbCBxdWUgZXN0w6EgZW52aWFuZG8gKOKAnGxhIG9icmHigJ0pLiBFbiBjYXNvIGRlIHNlciBjb3RpdHVsYXIsIGVsIGF1dG9yIGRlY2xhcmEgcXVlIGN1ZW50YSBjb24gZWwgIGNvbnNlbnRpbWllbnRvIGRlIGxvcyByZXN0YW50ZXMgdGl0dWxhcmVzIHBhcmEgaGFjZXIgbGEgcHJlc2VudGUgY2VzacOzbi4gRW4gY2FzbyBkZSBwcmV2aWEgY2VzacOzbiBkZSBsb3MgZGVyZWNob3MgZGUgZXhwbG90YWNpw7NuIHNvYnJlIGxhIG9icmEgYSB0ZXJjZXJvcywgZWwgYXV0b3IgZGVjbGFyYSBxdWUgdGllbmUgbGEgYXV0b3JpemFjacOzbiBleHByZXNhIGRlIGRpY2hvcyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgYSBsb3MgZmluZXMgZGUgZXN0YSBjZXNpw7NuLCBvIGJpZW4gcXVlIGhhIGNvbnNlcnZhZG8gbGEgZmFjdWx0YWQgZGUgY2VkZXIgZXN0b3MgZGVyZWNob3MgZW4gbGEgZm9ybWEgcHJldmlzdGEgZW4gbGEgcHJlc2VudGUgY2VzacOzbi48L3A+DQoNCjxwPkNvbiBlbCBmaW4gZGUgZGFyIGxhIG3DoXhpbWEgZGlmdXNpw7NuIGEgbGEgb2JyYSBhIHRyYXbDqXMgZGUgUkVESSwgZWwgQVVUT1IgQ0VERSBhIEFOSUksIGRlIGZvcm1hIGdyYXR1aXRhIHkgTk8gRVhDTFVTSVZBLCBjb24gY2Fyw6FjdGVyIGlycmV2b2NhYmxlIGUgaWxpbWl0YWRvIGVuIGVsIHRpZW1wbyB5IGNvbiDDoW1iaXRvIG11bmRpYWwsIGxvcyBkZXJlY2hvcyBkZSByZXByb2R1Y2Npw7NuLCBkZSBkaXN0cmlidWNpw7NuLCBkZSBjb211bmljYWNpw7NuIHDDumJsaWNhLCBpbmNsdWlkbyBlbCBkZXJlY2hvIGRlIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbGVjdHLDs25pY2EsIHBhcmEgcXVlIHB1ZWRhIHNlciB1dGlsaXphZGEgZGUgZm9ybWEgbGlicmUgeSBncmF0dWl0YSBwb3IgdG9kb3MgbG9zIHF1ZSBsbyBkZXNlZW4uPC9wPg0KDQo8cD5MYSBjZXNpw7NuIHNlIHJlYWxpemEgYmFqbyBsYXMgc2lndWllbnRlcyBjb25kaWNpb25lczo8L3A+DQoNCjxwPkxhIHRpdHVsYXJpZGFkIGRlIGxhIG9icmEgc2VndWlyw6EgY29ycmVzcG9uZGllbmRvIGFsIEF1dG9yIHkgbGEgcHJlc2VudGUgY2VzacOzbiBkZSBkZXJlY2hvcyBwZXJtaXRpcsOhIGEgUkVESTo8L3A+DQoNCjx1bD4gPGxpIHZhbHVlPShhKT5UcmFuc2Zvcm1hciBsYSBvYnJhIGVuIGxhIG1lZGlkYSBlbiBxdWUgc2VhIG5lY2VzYXJpbyBwYXJhIGFkYXB0YXJsYSBhIGN1YWxxdWllciB0ZWNub2xvZ8OtYSBzdXNjZXB0aWJsZSBkZSBpbmNvcnBvcmFjacOzbiBhIEludGVybmV0OyByZWFsaXphciBsYXMgYWRhcHRhY2lvbmVzIG5lY2VzYXJpYXMgcGFyYSBoYWNlciBwb3NpYmxlIHN1IGFjY2VzbyB5IHZpc3VhbGl6YWNpw7NuIHBlcm1hbmVudGUsIGHDum4gcG9yIHBhcnRlIGRlIHBlcnNvbmFzIGNvbiBkaXNjYXBhY2lkYWQsIHJlYWxpemFyIGxhcyBtaWdyYWNpb25lcyBkZSBmb3JtYXRvcyBwYXJhIGFzZWd1cmFyIGxhIHByZXNlcnZhY2nDs24gYSBsYXJnbyBwbGF6bywgaW5jb3Jwb3JhciBsb3MgbWV0YWRhdG9zIG5lY2VzYXJpb3MgcGFyYSByZWFsaXphciBlbCByZWdpc3RybyBkZSBsYSBvYnJhLCBlIGluY29ycG9yYXIgdGFtYmnDqW4g4oCcbWFyY2FzIGRlIGFndWHigJ0gbyBjdWFscXVpZXIgb3RybyBzaXN0ZW1hIGRlIHNlZ3VyaWRhZCBvIGRlIHByb3RlY2Npw7NuIG8gZGUgaWRlbnRpZmljYWNpw7NuIGRlIHByb2NlZGVuY2lhLiBFbiBuaW5nw7puIGNhc28gZGljaGFzIG1vZGlmaWNhY2lvbmVzIGltcGxpY2Fyw6FuIGFkdWx0ZXJhY2lvbmVzIGVuIGVsIGNvbnRlbmlkbyBkZSBsYSBvYnJhLjwvbGk+IA0KPGxpIHZhbHVlPShiKT5SZXByb2R1Y2lyIGxhIG9icmEgZW4gdW4gbWVkaW8gZGlnaXRhbCBwYXJhIHN1IGluY29ycG9yYWNpw7NuIGEgc2lzdGVtYXMgZGUgYsO6c3F1ZWRhIHkgcmVjdXBlcmFjacOzbiwgaW5jbHV5ZW5kbyBlbCBkZXJlY2hvIGEgcmVwcm9kdWNpciB5IGFsbWFjZW5hcmxhIGVuIHNlcnZpZG9yZXMgdSBvdHJvcyBtZWRpb3MgZGlnaXRhbGVzIGEgbG9zIGVmZWN0b3MgZGUgc2VndXJpZGFkIHkgcHJlc2VydmFjacOzbi48L2xpPiANCjxsaSB2YWx1ZT0oYyk+UGVybWl0aXIgYSBsb3MgdXN1YXJpb3MgbGEgZGVzY2FyZ2EgZGUgY29waWFzIGVsZWN0csOzbmljYXMgZGUgbGEgb2JyYSBlbiB1biBzb3BvcnRlIGRpZ2l0YWwuPC9saT4gDQo8bGkgdmFsdWU9KGQpPlJlYWxpemFyIGxhIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGUgbGEgb2JyYSBhY2Nlc2libGUgZGUgbW9kbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldC48L3VsPg0KDQo8cD5FbiB2aXJ0dWQgZGVsIGNhcsOhY3RlciBubyBleGNsdXNpdm8gZGUgbGEgY2VzacOzbiwgZWwgQXV0b3IgY29uc2VydmEgdG9kb3MgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEsIHkgcG9kcsOhIHBvbmVybGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvIGVuIGVzdGEgeSBlbiBwb3N0ZXJpb3JlcyB2ZXJzaW9uZXMsIGEgdHJhdsOpcyBkZSBsb3MgbWVkaW9zIHF1ZSBlc3RpbWUgb3BvcnR1bm9zLjwvcD4NCg0KPHA+RWwgQXV0b3IgZGVjbGFyYSBiYWpvIGp1cmFtZW50byBxdWUgbGEgcHJlc2VudGUgY2VzacOzbiBubyBpbmZyaW5nZSBuaW5nw7puIGRlcmVjaG8gZGUgdGVyY2Vyb3MsIHlhIHNlYW4gZGUgcHJvcGllZGFkIGluZHVzdHJpYWwsIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8geSBnYXJhbnRpemEgcXVlIGVsIGNvbnRlbmlkbyBkZSBsYSBvYnJhIG5vIGF0ZW50YSBjb250cmEgbG9zIGRlcmVjaG9zIGFsIGhvbm9yLCBhIGxhIGludGltaWRhZCB5IGEgbGEgaW1hZ2VuIGRlIHRlcmNlcm9zLCBuaSBlcyBkaXNjcmltaW5hdG9yaW8uIFJFREkgZXN0YXLDoSBleGVudG8gZGUgbGEgcmV2aXNpw7NuIGRlbCBjb250ZW5pZG8gZGUgbGEgb2JyYSwgcXVlIGVuIHRvZG8gY2FzbyBwZXJtYW5lY2Vyw6EgYmFqbyBsYSByZXNwb25zYWJpbGlkYWQgZXhjbHVzaXZhIGRlbCBBdXRvci48L3A+DQoNCjxwPkxhIG9icmEgc2UgcG9uZHLDoSBhIGRpc3Bvc2ljacOzbiBkZSBsb3MgdXN1YXJpb3MgcGFyYSBxdWUgaGFnYW4gZGUgZWxsYSB1biB1c28ganVzdG8geSByZXNwZXR1b3NvIGRlIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgeSBjb24gZmluZXMgZGUgZXN0dWRpbywgaW52ZXN0aWdhY2nDs24sIG8gY3VhbHF1aWVyIG90cm8gZmluIGzDrWNpdG8uIEVsIG1lbmNpb25hZG8gdXNvLCBtw6FzIGFsbMOhIGRlIGxhIGNvcGlhIHByaXZhZGEsIHJlcXVlcmlyw6EgcXVlIHNlIGNpdGUgbGEgZnVlbnRlIHkgc2UgcmVjb25vemNhIGxhIGF1dG9yw61hLiBBIHRhbGVzIGZpbmVzIGVsIEF1dG9yIGFjZXB0YSBlbCB1c28gZGUgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMgeSBFTElHRSB1bmEgZGUgZXN0YXMgbGljZW5jaWFzIGVzdGFuZGFyaXphZGFzIGEgbG9zIGZpbmVzIGRlIGNvbXVuaWNhciBzdSBvYnJhLjwvcD4NCg0KPHA+RWwgQXV0b3IsIGNvbW8gZ2FyYW50ZSBkZSBsYSBhdXRvcsOtYSBkZSBsYSBvYnJhIHkgZW4gcmVsYWNpw7NuIGEgbGEgbWlzbWEsIGRlY2xhcmEgcXVlIGxhIEFOSUkgc2UgZW5jdWVudHJhIGxpYnJlIGRlIHRvZG8gdGlwbyBkZSByZXNwb25zYWJpbGlkYWQsIHNlYSDDqXN0YSBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgbyBwZW5hbCwgeSBxdWUgw6lsIG1pc21vIGFzdW1lIGxhIHJlc3BvbnNhYmlsaWRhZCBmcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtbyBvIGRlbWFuZGEgcG9yIHBhcnRlIGRlIHRlcmNlcm9zLiBMQSBBTklJIGVzdGFyw6EgZXhlbnRhIGRlIGVqZXJjaXRhciBhY2Npb25lcyBsZWdhbGVzIGVuIG5vbWJyZSBkZWwgQXV0b3IgZW4gZWwgc3VwdWVzdG8gZGUgaW5mcmFjY2lvbmVzIGEgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGRlcml2YWRvcyBkZWwgZGVww7NzaXRvIHkgYXJjaGl2byBkZSBsYSBvYnJhLjwvcD4NCg0KPHA+QU5JSSBub3RpZmljYXLDoSBhbCBBdXRvciBkZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHF1ZSByZWNpYmEgZGUgdGVyY2Vyb3MgZW4gcmVsYWNpw7NuIGNvbiBsYSBvYnJhIHksIGVuIHBhcnRpY3VsYXIsIGRlIHJlY2xhbWFjaW9uZXMgcmVsYXRpdmFzIGEgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBzb2JyZSBlbGxhLjwvcD4NCg0KPHA+RWwgQXV0b3IgcG9kcsOhIHNvbGljaXRhciBlbCByZXRpcm8gbyBsYSBpbnZpc2liaWxpemFjacOzbiBkZSBsYSBvYnJhIGRlIFJFREkgc8OzbG8gcG9yIGNhdXNhIGp1c3RpZmljYWRhLiBBIHRhbCBmaW4gZGViZXLDoSBtYW5pZmVzdGFyIHN1IHZvbHVudGFkIGVuIGZvcm1hIGZlaGFjaWVudGUgeSBhY3JlZGl0YXIgZGViaWRhbWVudGUgbGEgY2F1c2EganVzdGlmaWNhZGEuIEFzaW1pc21vIEFOSUkgcG9kcsOhIHJldGlyYXIgbyBpbnZpc2liaWxpemFyIGxhIG9icmEgZGUgUkVESSwgcHJldmlhIG5vdGlmaWNhY2nDs24gYWwgQXV0b3IsIGVuIHN1cHVlc3RvcyBzdWZpY2llbnRlbWVudGUganVzdGlmaWNhZG9zLCBvIGVuIGNhc28gZGUgcmVjbGFtYWNpb25lcyBkZSB0ZXJjZXJvcy48L3A+Gobiernohttps://www.anii.org.uy/https://redi.anii.org.uy/oai/requestjmaldini@anii.org.uyUruguayopendoar:94212020-09-18T14:50:20REDI - Agencia Nacional de Investigación e Innovaciónfalse |
spellingShingle | Simulation and Analysis of Morphing Blades applied to a Vertical Axis Wind Turbine Leonczuk Minetto, Robert Alexis Energía eólica Viento Turbina CFD Simulation Wind Turbine Ingeniería y Tecnología Ingeniería Mecánica |
status_str | acceptedVersion |
title | Simulation and Analysis of Morphing Blades applied to a Vertical Axis Wind Turbine |
title_full | Simulation and Analysis of Morphing Blades applied to a Vertical Axis Wind Turbine |
title_fullStr | Simulation and Analysis of Morphing Blades applied to a Vertical Axis Wind Turbine |
title_full_unstemmed | Simulation and Analysis of Morphing Blades applied to a Vertical Axis Wind Turbine |
title_short | Simulation and Analysis of Morphing Blades applied to a Vertical Axis Wind Turbine |
title_sort | Simulation and Analysis of Morphing Blades applied to a Vertical Axis Wind Turbine |
topic | Energía eólica Viento Turbina CFD Simulation Wind Turbine Ingeniería y Tecnología Ingeniería Mecánica |
url | http://hdl.handle.net/20.500.12381/224 |