Simulation and Analysis of Morphing Blades applied to a Vertical Axis Wind Turbine

Leonczuk Minetto, Robert Alexis

Supervisor(es): Paraschivoiu, Marius

Resumen:

This study compares the performance of a Vertical Axis Wind Turbine with and without using morphing capabilities applied to its blades. It also explores the feasibility of applying moving mesh to model the morphing capability inside the software package STAR CCM+© in order to use Computational Fluid Dynamics (CFD) to analyze the flow’s behavior. Particularly it is important to capture the presence of dynamic stall and vortex shedding at certain regions over the blade’s path, which are associated with a decreased in the overall power coefficient. This work developed a methodology to analyze these morphing capabilities when applied over airfoils in 2D simulations, by using a combination of overset meshes and the morphing approach. The accuracy is verified by creating a baseline scenario and compare it against a benchmark case, while also testing for grid and time step sensitivity. The use of Reynold Averaged Navier Stokes equations was chosen, with Menter’s SST k-omega as the turbulence model. Afterward, a maximum power coefficient curve was plotted by testing three airfoil’s shapes as references, one forming the baseline case, while the other two delimiting the maximum deformation, marked as outward and inward cases. A final optimized case was tested, where the morphing was applied to strategic regions where the dynamic stall was highest, and where the shapes could ensure the maximum possible power output. This resulted in an improvement of 46.2% of the overall power coefficient.


Detalles Bibliográficos
2020
Agencia Nacional de Investigación e Innovación
Energía eólica
Viento
Turbina
CFD
Simulation
Wind
Turbine
Ingeniería y Tecnología
Ingeniería Mecánica
Inglés
Agencia Nacional de Investigación e Innovación
REDI
http://hdl.handle.net/20.500.12381/224
Acceso abierto
Reconocimiento 4.0 Internacional. (CC BY)
_version_ 1814959258203062272
author Leonczuk Minetto, Robert Alexis
author_facet Leonczuk Minetto, Robert Alexis
author_role author
bitstream.checksum.fl_str_mv 2d97768b1a25a7df5a347bb58fd2d77f
a1bf671e2453882c67e63e2dfd2468cc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
bitstream.url.fl_str_mv https://redi.anii.org.uy/jspui/bitstream/20.500.12381/224/2/license.txt
https://redi.anii.org.uy/jspui/bitstream/20.500.12381/224/1/Leonczuk_MASc_S2020.pdf
collection REDI
dc.creator.advisor.none.fl_str_mv Paraschivoiu, Marius
dc.creator.none.fl_str_mv Leonczuk Minetto, Robert Alexis
dc.date.accessioned.none.fl_str_mv 2020-02-26T15:08:14Z
dc.date.available.none.fl_str_mv 2020-02-26T15:08:14Z
dc.date.issued.none.fl_str_mv 2020-01
dc.description.abstract.none.fl_txt_mv This study compares the performance of a Vertical Axis Wind Turbine with and without using morphing capabilities applied to its blades. It also explores the feasibility of applying moving mesh to model the morphing capability inside the software package STAR CCM+© in order to use Computational Fluid Dynamics (CFD) to analyze the flow’s behavior. Particularly it is important to capture the presence of dynamic stall and vortex shedding at certain regions over the blade’s path, which are associated with a decreased in the overall power coefficient. This work developed a methodology to analyze these morphing capabilities when applied over airfoils in 2D simulations, by using a combination of overset meshes and the morphing approach. The accuracy is verified by creating a baseline scenario and compare it against a benchmark case, while also testing for grid and time step sensitivity. The use of Reynold Averaged Navier Stokes equations was chosen, with Menter’s SST k-omega as the turbulence model. Afterward, a maximum power coefficient curve was plotted by testing three airfoil’s shapes as references, one forming the baseline case, while the other two delimiting the maximum deformation, marked as outward and inward cases. A final optimized case was tested, where the morphing was applied to strategic regions where the dynamic stall was highest, and where the shapes could ensure the maximum possible power output. This resulted in an improvement of 46.2% of the overall power coefficient.
dc.description.sponsorship.none.fl_txt_mv Agencia Nacional de Investigación e Innovación
dc.format.extent.es.fl_str_mv 81 p.
dc.identifier.anii.es.fl_str_mv POS_IDRC_2016_1_131182
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12381/224
dc.language.iso.none.fl_str_mv eng
dc.publisher.es.fl_str_mv Concordia University
dc.rights.es.fl_str_mv Acceso abierto
dc.rights.license.none.fl_str_mv Reconocimiento 4.0 Internacional. (CC BY)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:REDI
instname:Agencia Nacional de Investigación e Innovación
instacron:Agencia Nacional de Investigación e Innovación
dc.subject.anii.es.fl_str_mv Ingeniería y Tecnología
Ingeniería Mecánica
dc.subject.es.fl_str_mv Energía eólica
Viento
Turbina
CFD
Simulation
Wind
Turbine
dc.title.none.fl_str_mv Simulation and Analysis of Morphing Blades applied to a Vertical Axis Wind Turbine
dc.type.es.fl_str_mv Tesis de maestría
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.es.fl_str_mv Aceptado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description This study compares the performance of a Vertical Axis Wind Turbine with and without using morphing capabilities applied to its blades. It also explores the feasibility of applying moving mesh to model the morphing capability inside the software package STAR CCM+© in order to use Computational Fluid Dynamics (CFD) to analyze the flow’s behavior. Particularly it is important to capture the presence of dynamic stall and vortex shedding at certain regions over the blade’s path, which are associated with a decreased in the overall power coefficient. This work developed a methodology to analyze these morphing capabilities when applied over airfoils in 2D simulations, by using a combination of overset meshes and the morphing approach. The accuracy is verified by creating a baseline scenario and compare it against a benchmark case, while also testing for grid and time step sensitivity. The use of Reynold Averaged Navier Stokes equations was chosen, with Menter’s SST k-omega as the turbulence model. Afterward, a maximum power coefficient curve was plotted by testing three airfoil’s shapes as references, one forming the baseline case, while the other two delimiting the maximum deformation, marked as outward and inward cases. A final optimized case was tested, where the morphing was applied to strategic regions where the dynamic stall was highest, and where the shapes could ensure the maximum possible power output. This resulted in an improvement of 46.2% of the overall power coefficient.
eu_rights_str_mv openAccess
format masterThesis
id REDI_13570d33fac7346ad5e2cd30f4db25b8
identifier_str_mv POS_IDRC_2016_1_131182
instacron_str Agencia Nacional de Investigación e Innovación
institution Agencia Nacional de Investigación e Innovación
instname_str Agencia Nacional de Investigación e Innovación
language eng
network_acronym_str REDI
network_name_str REDI
oai_identifier_str oai:redi.anii.org.uy:20.500.12381/224
publishDate 2020
reponame_str REDI
repository.mail.fl_str_mv jmaldini@anii.org.uy
repository.name.fl_str_mv REDI - Agencia Nacional de Investigación e Innovación
repository_id_str 9421
rights_invalid_str_mv Reconocimiento 4.0 Internacional. (CC BY)
Acceso abierto
spelling Reconocimiento 4.0 Internacional. (CC BY)Acceso abiertoinfo:eu-repo/semantics/openAccess2020-02-26T15:08:14Z2020-02-26T15:08:14Z2020-01http://hdl.handle.net/20.500.12381/224POS_IDRC_2016_1_131182This study compares the performance of a Vertical Axis Wind Turbine with and without using morphing capabilities applied to its blades. It also explores the feasibility of applying moving mesh to model the morphing capability inside the software package STAR CCM+© in order to use Computational Fluid Dynamics (CFD) to analyze the flow’s behavior. Particularly it is important to capture the presence of dynamic stall and vortex shedding at certain regions over the blade’s path, which are associated with a decreased in the overall power coefficient. This work developed a methodology to analyze these morphing capabilities when applied over airfoils in 2D simulations, by using a combination of overset meshes and the morphing approach. The accuracy is verified by creating a baseline scenario and compare it against a benchmark case, while also testing for grid and time step sensitivity. The use of Reynold Averaged Navier Stokes equations was chosen, with Menter’s SST k-omega as the turbulence model. Afterward, a maximum power coefficient curve was plotted by testing three airfoil’s shapes as references, one forming the baseline case, while the other two delimiting the maximum deformation, marked as outward and inward cases. A final optimized case was tested, where the morphing was applied to strategic regions where the dynamic stall was highest, and where the shapes could ensure the maximum possible power output. This resulted in an improvement of 46.2% of the overall power coefficient.Agencia Nacional de Investigación e Innovación81 p.engConcordia UniversityEnergía eólicaVientoTurbinaCFDSimulationWindTurbineIngeniería y TecnologíaIngeniería MecánicaSimulation and Analysis of Morphing Blades applied to a Vertical Axis Wind TurbineTesis de maestríaAceptadoinfo:eu-repo/semantics/acceptedVersioninfo:eu-repo/semantics/masterThesisreponame:REDIinstname:Agencia Nacional de Investigación e Innovacióninstacron:Agencia Nacional de Investigación e InnovaciónLeonczuk Minetto, Robert AlexisParaschivoiu, MariusLICENSElicense.txtlicense.txttext/plain; charset=utf-84746https://redi.anii.org.uy/jspui/bitstream/20.500.12381/224/2/license.txt2d97768b1a25a7df5a347bb58fd2d77fMD52ORIGINALLeonczuk_MASc_S2020.pdfLeonczuk_MASc_S2020.pdfTesis de maestríaapplication/pdf3592834https://redi.anii.org.uy/jspui/bitstream/20.500.12381/224/1/Leonczuk_MASc_S2020.pdfa1bf671e2453882c67e63e2dfd2468ccMD5120.500.12381/2242020-09-18 11:50:20.808oai:redi.anii.org.uy:20.500.12381/224PHA+QWNlcHRhbmRvIGxhIGNlc2nDs24gZGUgZGVyZWNob3MgZWwgdXN1YXJpbyBERUNMQVJBIHF1ZSBvc3RlbnRhIGxhIGNvbmRpY2nDs24gZGUgYXV0b3IgZW4gZWwgc2VudGlkbyBxdWUgb3RvcmdhIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlIHNvYnJlICBwcm9waWVkYWQgaW50ZWxlY3R1YWwgZGUgbGEgb2JyYSBvcmlnaW5hbCBxdWUgZXN0w6EgZW52aWFuZG8gKOKAnGxhIG9icmHigJ0pLiBFbiBjYXNvIGRlIHNlciBjb3RpdHVsYXIsIGVsIGF1dG9yIGRlY2xhcmEgcXVlIGN1ZW50YSBjb24gZWwgIGNvbnNlbnRpbWllbnRvIGRlIGxvcyByZXN0YW50ZXMgdGl0dWxhcmVzIHBhcmEgaGFjZXIgbGEgcHJlc2VudGUgY2VzacOzbi4gRW4gY2FzbyBkZSBwcmV2aWEgY2VzacOzbiBkZSBsb3MgZGVyZWNob3MgZGUgZXhwbG90YWNpw7NuIHNvYnJlIGxhIG9icmEgYSB0ZXJjZXJvcywgZWwgYXV0b3IgZGVjbGFyYSBxdWUgdGllbmUgbGEgYXV0b3JpemFjacOzbiBleHByZXNhIGRlIGRpY2hvcyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgYSBsb3MgZmluZXMgZGUgZXN0YSBjZXNpw7NuLCBvIGJpZW4gcXVlIGhhIGNvbnNlcnZhZG8gbGEgZmFjdWx0YWQgZGUgY2VkZXIgZXN0b3MgZGVyZWNob3MgZW4gbGEgZm9ybWEgcHJldmlzdGEgZW4gbGEgcHJlc2VudGUgY2VzacOzbi48L3A+DQoNCjxwPkNvbiBlbCBmaW4gZGUgZGFyIGxhIG3DoXhpbWEgZGlmdXNpw7NuIGEgbGEgb2JyYSBhIHRyYXbDqXMgZGUgUkVESSwgZWwgQVVUT1IgQ0VERSBhIEFOSUksIGRlIGZvcm1hIGdyYXR1aXRhIHkgTk8gRVhDTFVTSVZBLCBjb24gY2Fyw6FjdGVyIGlycmV2b2NhYmxlIGUgaWxpbWl0YWRvIGVuIGVsIHRpZW1wbyB5IGNvbiDDoW1iaXRvIG11bmRpYWwsIGxvcyBkZXJlY2hvcyBkZSByZXByb2R1Y2Npw7NuLCBkZSBkaXN0cmlidWNpw7NuLCBkZSBjb211bmljYWNpw7NuIHDDumJsaWNhLCBpbmNsdWlkbyBlbCBkZXJlY2hvIGRlIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbGVjdHLDs25pY2EsIHBhcmEgcXVlIHB1ZWRhIHNlciB1dGlsaXphZGEgZGUgZm9ybWEgbGlicmUgeSBncmF0dWl0YSBwb3IgdG9kb3MgbG9zIHF1ZSBsbyBkZXNlZW4uPC9wPg0KDQo8cD5MYSBjZXNpw7NuIHNlIHJlYWxpemEgYmFqbyBsYXMgc2lndWllbnRlcyBjb25kaWNpb25lczo8L3A+DQoNCjxwPkxhIHRpdHVsYXJpZGFkIGRlIGxhIG9icmEgc2VndWlyw6EgY29ycmVzcG9uZGllbmRvIGFsIEF1dG9yIHkgbGEgcHJlc2VudGUgY2VzacOzbiBkZSBkZXJlY2hvcyBwZXJtaXRpcsOhIGEgUkVESTo8L3A+DQoNCjx1bD4gPGxpIHZhbHVlPShhKT5UcmFuc2Zvcm1hciBsYSBvYnJhIGVuIGxhIG1lZGlkYSBlbiBxdWUgc2VhIG5lY2VzYXJpbyBwYXJhIGFkYXB0YXJsYSBhIGN1YWxxdWllciB0ZWNub2xvZ8OtYSBzdXNjZXB0aWJsZSBkZSBpbmNvcnBvcmFjacOzbiBhIEludGVybmV0OyByZWFsaXphciBsYXMgYWRhcHRhY2lvbmVzIG5lY2VzYXJpYXMgcGFyYSBoYWNlciBwb3NpYmxlIHN1IGFjY2VzbyB5IHZpc3VhbGl6YWNpw7NuIHBlcm1hbmVudGUsIGHDum4gcG9yIHBhcnRlIGRlIHBlcnNvbmFzIGNvbiBkaXNjYXBhY2lkYWQsIHJlYWxpemFyIGxhcyBtaWdyYWNpb25lcyBkZSBmb3JtYXRvcyBwYXJhIGFzZWd1cmFyIGxhIHByZXNlcnZhY2nDs24gYSBsYXJnbyBwbGF6bywgaW5jb3Jwb3JhciBsb3MgbWV0YWRhdG9zIG5lY2VzYXJpb3MgcGFyYSByZWFsaXphciBlbCByZWdpc3RybyBkZSBsYSBvYnJhLCBlIGluY29ycG9yYXIgdGFtYmnDqW4g4oCcbWFyY2FzIGRlIGFndWHigJ0gbyBjdWFscXVpZXIgb3RybyBzaXN0ZW1hIGRlIHNlZ3VyaWRhZCBvIGRlIHByb3RlY2Npw7NuIG8gZGUgaWRlbnRpZmljYWNpw7NuIGRlIHByb2NlZGVuY2lhLiBFbiBuaW5nw7puIGNhc28gZGljaGFzIG1vZGlmaWNhY2lvbmVzIGltcGxpY2Fyw6FuIGFkdWx0ZXJhY2lvbmVzIGVuIGVsIGNvbnRlbmlkbyBkZSBsYSBvYnJhLjwvbGk+IA0KPGxpIHZhbHVlPShiKT5SZXByb2R1Y2lyIGxhIG9icmEgZW4gdW4gbWVkaW8gZGlnaXRhbCBwYXJhIHN1IGluY29ycG9yYWNpw7NuIGEgc2lzdGVtYXMgZGUgYsO6c3F1ZWRhIHkgcmVjdXBlcmFjacOzbiwgaW5jbHV5ZW5kbyBlbCBkZXJlY2hvIGEgcmVwcm9kdWNpciB5IGFsbWFjZW5hcmxhIGVuIHNlcnZpZG9yZXMgdSBvdHJvcyBtZWRpb3MgZGlnaXRhbGVzIGEgbG9zIGVmZWN0b3MgZGUgc2VndXJpZGFkIHkgcHJlc2VydmFjacOzbi48L2xpPiANCjxsaSB2YWx1ZT0oYyk+UGVybWl0aXIgYSBsb3MgdXN1YXJpb3MgbGEgZGVzY2FyZ2EgZGUgY29waWFzIGVsZWN0csOzbmljYXMgZGUgbGEgb2JyYSBlbiB1biBzb3BvcnRlIGRpZ2l0YWwuPC9saT4gDQo8bGkgdmFsdWU9KGQpPlJlYWxpemFyIGxhIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGUgbGEgb2JyYSBhY2Nlc2libGUgZGUgbW9kbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldC48L3VsPg0KDQo8cD5FbiB2aXJ0dWQgZGVsIGNhcsOhY3RlciBubyBleGNsdXNpdm8gZGUgbGEgY2VzacOzbiwgZWwgQXV0b3IgY29uc2VydmEgdG9kb3MgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEsIHkgcG9kcsOhIHBvbmVybGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvIGVuIGVzdGEgeSBlbiBwb3N0ZXJpb3JlcyB2ZXJzaW9uZXMsIGEgdHJhdsOpcyBkZSBsb3MgbWVkaW9zIHF1ZSBlc3RpbWUgb3BvcnR1bm9zLjwvcD4NCg0KPHA+RWwgQXV0b3IgZGVjbGFyYSBiYWpvIGp1cmFtZW50byBxdWUgbGEgcHJlc2VudGUgY2VzacOzbiBubyBpbmZyaW5nZSBuaW5nw7puIGRlcmVjaG8gZGUgdGVyY2Vyb3MsIHlhIHNlYW4gZGUgcHJvcGllZGFkIGluZHVzdHJpYWwsIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8geSBnYXJhbnRpemEgcXVlIGVsIGNvbnRlbmlkbyBkZSBsYSBvYnJhIG5vIGF0ZW50YSBjb250cmEgbG9zIGRlcmVjaG9zIGFsIGhvbm9yLCBhIGxhIGludGltaWRhZCB5IGEgbGEgaW1hZ2VuIGRlIHRlcmNlcm9zLCBuaSBlcyBkaXNjcmltaW5hdG9yaW8uIFJFREkgZXN0YXLDoSBleGVudG8gZGUgbGEgcmV2aXNpw7NuIGRlbCBjb250ZW5pZG8gZGUgbGEgb2JyYSwgcXVlIGVuIHRvZG8gY2FzbyBwZXJtYW5lY2Vyw6EgYmFqbyBsYSByZXNwb25zYWJpbGlkYWQgZXhjbHVzaXZhIGRlbCBBdXRvci48L3A+DQoNCjxwPkxhIG9icmEgc2UgcG9uZHLDoSBhIGRpc3Bvc2ljacOzbiBkZSBsb3MgdXN1YXJpb3MgcGFyYSBxdWUgaGFnYW4gZGUgZWxsYSB1biB1c28ganVzdG8geSByZXNwZXR1b3NvIGRlIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgeSBjb24gZmluZXMgZGUgZXN0dWRpbywgaW52ZXN0aWdhY2nDs24sIG8gY3VhbHF1aWVyIG90cm8gZmluIGzDrWNpdG8uIEVsIG1lbmNpb25hZG8gdXNvLCBtw6FzIGFsbMOhIGRlIGxhIGNvcGlhIHByaXZhZGEsIHJlcXVlcmlyw6EgcXVlIHNlIGNpdGUgbGEgZnVlbnRlIHkgc2UgcmVjb25vemNhIGxhIGF1dG9yw61hLiBBIHRhbGVzIGZpbmVzIGVsIEF1dG9yIGFjZXB0YSBlbCB1c28gZGUgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMgeSBFTElHRSB1bmEgZGUgZXN0YXMgbGljZW5jaWFzIGVzdGFuZGFyaXphZGFzIGEgbG9zIGZpbmVzIGRlIGNvbXVuaWNhciBzdSBvYnJhLjwvcD4NCg0KPHA+RWwgQXV0b3IsIGNvbW8gZ2FyYW50ZSBkZSBsYSBhdXRvcsOtYSBkZSBsYSBvYnJhIHkgZW4gcmVsYWNpw7NuIGEgbGEgbWlzbWEsIGRlY2xhcmEgcXVlIGxhIEFOSUkgc2UgZW5jdWVudHJhIGxpYnJlIGRlIHRvZG8gdGlwbyBkZSByZXNwb25zYWJpbGlkYWQsIHNlYSDDqXN0YSBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgbyBwZW5hbCwgeSBxdWUgw6lsIG1pc21vIGFzdW1lIGxhIHJlc3BvbnNhYmlsaWRhZCBmcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtbyBvIGRlbWFuZGEgcG9yIHBhcnRlIGRlIHRlcmNlcm9zLiBMQSBBTklJIGVzdGFyw6EgZXhlbnRhIGRlIGVqZXJjaXRhciBhY2Npb25lcyBsZWdhbGVzIGVuIG5vbWJyZSBkZWwgQXV0b3IgZW4gZWwgc3VwdWVzdG8gZGUgaW5mcmFjY2lvbmVzIGEgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGRlcml2YWRvcyBkZWwgZGVww7NzaXRvIHkgYXJjaGl2byBkZSBsYSBvYnJhLjwvcD4NCg0KPHA+QU5JSSBub3RpZmljYXLDoSBhbCBBdXRvciBkZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHF1ZSByZWNpYmEgZGUgdGVyY2Vyb3MgZW4gcmVsYWNpw7NuIGNvbiBsYSBvYnJhIHksIGVuIHBhcnRpY3VsYXIsIGRlIHJlY2xhbWFjaW9uZXMgcmVsYXRpdmFzIGEgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBzb2JyZSBlbGxhLjwvcD4NCg0KPHA+RWwgQXV0b3IgcG9kcsOhIHNvbGljaXRhciBlbCByZXRpcm8gbyBsYSBpbnZpc2liaWxpemFjacOzbiBkZSBsYSBvYnJhIGRlIFJFREkgc8OzbG8gcG9yIGNhdXNhIGp1c3RpZmljYWRhLiBBIHRhbCBmaW4gZGViZXLDoSBtYW5pZmVzdGFyIHN1IHZvbHVudGFkIGVuIGZvcm1hIGZlaGFjaWVudGUgeSBhY3JlZGl0YXIgZGViaWRhbWVudGUgbGEgY2F1c2EganVzdGlmaWNhZGEuIEFzaW1pc21vIEFOSUkgcG9kcsOhIHJldGlyYXIgbyBpbnZpc2liaWxpemFyIGxhIG9icmEgZGUgUkVESSwgcHJldmlhIG5vdGlmaWNhY2nDs24gYWwgQXV0b3IsIGVuIHN1cHVlc3RvcyBzdWZpY2llbnRlbWVudGUganVzdGlmaWNhZG9zLCBvIGVuIGNhc28gZGUgcmVjbGFtYWNpb25lcyBkZSB0ZXJjZXJvcy48L3A+Gobiernohttps://www.anii.org.uy/https://redi.anii.org.uy/oai/requestjmaldini@anii.org.uyUruguayopendoar:94212020-09-18T14:50:20REDI - Agencia Nacional de Investigación e Innovaciónfalse
spellingShingle Simulation and Analysis of Morphing Blades applied to a Vertical Axis Wind Turbine
Leonczuk Minetto, Robert Alexis
Energía eólica
Viento
Turbina
CFD
Simulation
Wind
Turbine
Ingeniería y Tecnología
Ingeniería Mecánica
status_str acceptedVersion
title Simulation and Analysis of Morphing Blades applied to a Vertical Axis Wind Turbine
title_full Simulation and Analysis of Morphing Blades applied to a Vertical Axis Wind Turbine
title_fullStr Simulation and Analysis of Morphing Blades applied to a Vertical Axis Wind Turbine
title_full_unstemmed Simulation and Analysis of Morphing Blades applied to a Vertical Axis Wind Turbine
title_short Simulation and Analysis of Morphing Blades applied to a Vertical Axis Wind Turbine
title_sort Simulation and Analysis of Morphing Blades applied to a Vertical Axis Wind Turbine
topic Energía eólica
Viento
Turbina
CFD
Simulation
Wind
Turbine
Ingeniería y Tecnología
Ingeniería Mecánica
url http://hdl.handle.net/20.500.12381/224