On the Bit Complexity of Iterated Memory

Toyos-Marfurt, Guillermo - Kuznetsov, Petr

Resumen:

Computability, in the presence of asynchrony and failures, is one of the central questions in distributed computing. The celebrated asynchronous computability theorem (ACT) charaterizes the computing power of the read-write shared-memory model through the geometric properties of its protocol complex: a combinatorial structure describing the states the model can reach via its finite executions. This characterization assumes that the memory is of unbounded capacity, in particular, it is able to store the exponentially growing states of the full-information protocol. In this paper, we tackle an orthogonal question: what is the minimal memory capacity that allows us to simulate a given number of rounds of the full-information protocol? In the iterated immediate snapshot model (IIS), we determine necessary and sufficient conditions on the number of bits an IIS element should be able to store so that the resulting protocol is equivalent, up to isomorphism, to the full-information protocol. Our characterization implies that n≥3 processes can simulate r rounds of the full-information IIS protocol as long as the bit complexity per process is within Ω(rn) and O(rnlogn). Two processes, however, can simulate any number of rounds of the full-information protocol using only 2 bits per process, which implies, in particular, that just 2 bits per process are sufficient to solve ε-agreement for arbitrarily small ε.


Detalles Bibliográficos
2024
Agencia Nacional de Investigación e Innovación
Mazars Group
Distributed systems
Iterated memory models
Theory of computation
Combinatorial topology
Ciencias Naturales y Exactas
Ciencias de la Computación e Información
Inglés
Agencia Nacional de Investigación e Innovación
REDI
https://hdl.handle.net/20.500.12381/3685
https://doi.org/10.48550/arXiv.2402.12484
Acceso abierto
Reconocimiento 4.0 Internacional. (CC BY)
_version_ 1816137012695007232
author Toyos-Marfurt, Guillermo
author2 Kuznetsov, Petr
author2_role author
author_facet Toyos-Marfurt, Guillermo
Kuznetsov, Petr
author_role author
bitstream.checksum.fl_str_mv a4ce09f01b5dd771727aa05c73851623
d9a2495678668e9d6de6fd573e8945cb
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
bitstream.url.fl_str_mv https://redi.anii.org.uy/jspui/bitstream/20.500.12381/3685/2/license.txt
https://redi.anii.org.uy/jspui/bitstream/20.500.12381/3685/1/2402.12484v1.pdf
collection REDI
dc.creator.none.fl_str_mv Toyos-Marfurt, Guillermo
Kuznetsov, Petr
dc.date.accessioned.none.fl_str_mv 2024-11-15T16:43:53Z
dc.date.available.none.fl_str_mv 2024-11-15T16:43:53Z
dc.date.issued.none.fl_str_mv 2024-02-19
dc.description.abstract.none.fl_txt_mv Computability, in the presence of asynchrony and failures, is one of the central questions in distributed computing. The celebrated asynchronous computability theorem (ACT) charaterizes the computing power of the read-write shared-memory model through the geometric properties of its protocol complex: a combinatorial structure describing the states the model can reach via its finite executions. This characterization assumes that the memory is of unbounded capacity, in particular, it is able to store the exponentially growing states of the full-information protocol. In this paper, we tackle an orthogonal question: what is the minimal memory capacity that allows us to simulate a given number of rounds of the full-information protocol? In the iterated immediate snapshot model (IIS), we determine necessary and sufficient conditions on the number of bits an IIS element should be able to store so that the resulting protocol is equivalent, up to isomorphism, to the full-information protocol. Our characterization implies that n≥3 processes can simulate r rounds of the full-information IIS protocol as long as the bit complexity per process is within Ω(rn) and O(rnlogn). Two processes, however, can simulate any number of rounds of the full-information protocol using only 2 bits per process, which implies, in particular, that just 2 bits per process are sufficient to solve ε-agreement for arbitrarily small ε.
dc.description.sponsorship.none.fl_txt_mv Agencia Nacional de Investigación e Innovación
Mazars Group
dc.identifier.anii.es.fl_str_mv POS_EXT_2021_1_171849
dc.identifier.doi.none.fl_str_mv https://doi.org/10.48550/arXiv.2402.12484
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12381/3685
dc.language.iso.none.fl_str_mv eng
dc.relation.es.fl_str_mv https://doi.org/10.1007/978-3-031-60603-8_25
dc.rights.*.fl_str_mv Acceso abierto
dc.rights.license.none.fl_str_mv Reconocimiento 4.0 Internacional. (CC BY)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.es.fl_str_mv 31st International Colloquium On Structural Information and Communication Complexity (SIROCCO 2024), Vietri sul Mare, June 2024.
dc.source.none.fl_str_mv reponame:REDI
instname:Agencia Nacional de Investigación e Innovación
instacron:Agencia Nacional de Investigación e Innovación
dc.subject.anii.none.fl_str_mv Ciencias Naturales y Exactas
Ciencias de la Computación e Información
dc.subject.es.fl_str_mv Distributed systems
Iterated memory models
Theory of computation
Combinatorial topology
dc.title.none.fl_str_mv On the Bit Complexity of Iterated Memory
dc.type.es.fl_str_mv Documento de conferencia
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.version.es.fl_str_mv Publicado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description Computability, in the presence of asynchrony and failures, is one of the central questions in distributed computing. The celebrated asynchronous computability theorem (ACT) charaterizes the computing power of the read-write shared-memory model through the geometric properties of its protocol complex: a combinatorial structure describing the states the model can reach via its finite executions. This characterization assumes that the memory is of unbounded capacity, in particular, it is able to store the exponentially growing states of the full-information protocol. In this paper, we tackle an orthogonal question: what is the minimal memory capacity that allows us to simulate a given number of rounds of the full-information protocol? In the iterated immediate snapshot model (IIS), we determine necessary and sufficient conditions on the number of bits an IIS element should be able to store so that the resulting protocol is equivalent, up to isomorphism, to the full-information protocol. Our characterization implies that n≥3 processes can simulate r rounds of the full-information IIS protocol as long as the bit complexity per process is within Ω(rn) and O(rnlogn). Two processes, however, can simulate any number of rounds of the full-information protocol using only 2 bits per process, which implies, in particular, that just 2 bits per process are sufficient to solve ε-agreement for arbitrarily small ε.
eu_rights_str_mv openAccess
format conferenceObject
id REDI_09ea9f8fc4d38994934653747e31b52b
identifier_str_mv POS_EXT_2021_1_171849
instacron_str Agencia Nacional de Investigación e Innovación
institution Agencia Nacional de Investigación e Innovación
instname_str Agencia Nacional de Investigación e Innovación
language eng
network_acronym_str REDI
network_name_str REDI
oai_identifier_str oai:redi.anii.org.uy:20.500.12381/3685
publishDate 2024
reponame_str REDI
repository.mail.fl_str_mv jmaldini@anii.org.uy
repository.name.fl_str_mv REDI - Agencia Nacional de Investigación e Innovación
repository_id_str 9421
rights_invalid_str_mv Reconocimiento 4.0 Internacional. (CC BY)
Acceso abierto
spelling Reconocimiento 4.0 Internacional. (CC BY)Acceso abiertoinfo:eu-repo/semantics/openAccess2024-11-15T16:43:53Z2024-11-15T16:43:53Z2024-02-19https://hdl.handle.net/20.500.12381/3685POS_EXT_2021_1_171849https://doi.org/10.48550/arXiv.2402.12484Computability, in the presence of asynchrony and failures, is one of the central questions in distributed computing. The celebrated asynchronous computability theorem (ACT) charaterizes the computing power of the read-write shared-memory model through the geometric properties of its protocol complex: a combinatorial structure describing the states the model can reach via its finite executions. This characterization assumes that the memory is of unbounded capacity, in particular, it is able to store the exponentially growing states of the full-information protocol. In this paper, we tackle an orthogonal question: what is the minimal memory capacity that allows us to simulate a given number of rounds of the full-information protocol? In the iterated immediate snapshot model (IIS), we determine necessary and sufficient conditions on the number of bits an IIS element should be able to store so that the resulting protocol is equivalent, up to isomorphism, to the full-information protocol. Our characterization implies that n≥3 processes can simulate r rounds of the full-information IIS protocol as long as the bit complexity per process is within Ω(rn) and O(rnlogn). Two processes, however, can simulate any number of rounds of the full-information protocol using only 2 bits per process, which implies, in particular, that just 2 bits per process are sufficient to solve ε-agreement for arbitrarily small ε.Agencia Nacional de Investigación e InnovaciónMazars Groupenghttps://doi.org/10.1007/978-3-031-60603-8_2531st International Colloquium On Structural Information and Communication Complexity (SIROCCO 2024), Vietri sul Mare, June 2024.reponame:REDIinstname:Agencia Nacional de Investigación e Innovacióninstacron:Agencia Nacional de Investigación e InnovaciónDistributed systemsIterated memory modelsTheory of computationCombinatorial topologyCiencias Naturales y ExactasCiencias de la Computación e InformaciónOn the Bit Complexity of Iterated MemoryDocumento de conferenciaPublicadoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/conferenceObjectInstitut Polytechnique de Paris//Ciencias Naturales y Exactas/Ciencias de la Computación e Información/Ciencias de la Computación e InformaciónToyos-Marfurt, GuillermoKuznetsov, PetrLICENSElicense.txtlicense.txttext/plain; charset=utf-84967https://redi.anii.org.uy/jspui/bitstream/20.500.12381/3685/2/license.txta4ce09f01b5dd771727aa05c73851623MD52ORIGINAL2402.12484v1.pdf2402.12484v1.pdfapplication/pdf918896https://redi.anii.org.uy/jspui/bitstream/20.500.12381/3685/1/2402.12484v1.pdfd9a2495678668e9d6de6fd573e8945cbMD5120.500.12381/36852024-11-15 13:43:54.56oai:redi.anii.org.uy:20.500.12381/3685PHA+PGI+QUNVRVJETyBERSBDRVNJT04gTk8gRVhDTFVTSVZBIERFIERFUkVDSE9TPC9iPjwvcD4NCg0KPHA+QWNlcHRhbmRvIGxhIGNlc2nDs24gZGUgZGVyZWNob3MgZWwgdXN1YXJpbyBERUNMQVJBIHF1ZSBvc3RlbnRhIGxhIGNvbmRpY2nDs24gZGUgYXV0b3IgZW4gZWwgc2VudGlkbyBxdWUgb3RvcmdhIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlIHNvYnJlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBkZSBsYSBvYnJhIG9yaWdpbmFsIHF1ZSBlc3TDoSBlbnZpYW5kbyAo4oCcbGEgb2JyYeKAnSkuIEVuIGNhc28gZGUgc2VyIGNvdGl0dWxhciwgZWwgYXV0b3IgZGVjbGFyYSBxdWUgY3VlbnRhIGNvbiBlbCAgY29uc2VudGltaWVudG8gZGUgbG9zIHJlc3RhbnRlcyB0aXR1bGFyZXMgcGFyYSBoYWNlciBsYSBwcmVzZW50ZSBjZXNpw7NuLiBFbiBjYXNvIGRlIHByZXZpYSBjZXNpw7NuIGRlIGxvcyBkZXJlY2hvcyBkZSBleHBsb3RhY2nDs24gc29icmUgbGEgb2JyYSBhIHRlcmNlcm9zLCBlbCBhdXRvciBkZWNsYXJhIHF1ZSB0aWVuZSBsYSBhdXRvcml6YWNpw7NuIGV4cHJlc2EgZGUgZGljaG9zIHRpdHVsYXJlcyBkZSBkZXJlY2hvcyBhIGxvcyBmaW5lcyBkZSBlc3RhIGNlc2nDs24sIG8gYmllbiBxdWUgaGEgY29uc2VydmFkbyBsYSBmYWN1bHRhZCBkZSBjZWRlciBlc3RvcyBkZXJlY2hvcyBlbiBsYSBmb3JtYSBwcmV2aXN0YSBlbiBsYSBwcmVzZW50ZSBjZXNpw7NuLjwvcD4NCg0KPHA+Q29uIGVsIGZpbiBkZSBkYXIgbGEgbcOheGltYSBkaWZ1c2nDs24gYSBsYSBvYnJhIGEgdHJhdsOpcyBkZWwgcmVwb3NpdG9yaW8gZGUgYWNjZXNvIGFiaWVydG8gUkVESSAoaHR0cHM6Ly9yZWRpLmFuaWkub3JnLnV5KSwgZWwgQVVUT1IgQ0VERSBhIDxiPkFnZW5jaWEgTmFjaW9uYWwgZGUgSW52ZXN0aWdhY2nDs24gZSBJbm5vdmFjacOzbjwvYj4gKDxiPkFOSUk8L2I+KSwgZGUgZm9ybWEgZ3JhdHVpdGEgeSBOTyBFWENMVVNJVkEsIGNvbiBjYXLDoWN0ZXIgaXJyZXZvY2FibGUgZSBpbGltaXRhZG8gZW4gZWwgdGllbXBvIHkgY29uIMOhbWJpdG8gbXVuZGlhbCwgbG9zIGRlcmVjaG9zIGRlIHJlcHJvZHVjY2nDs24sIGRlIGRpc3RyaWJ1Y2nDs24sIGRlIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EsIGluY2x1aWRvIGVsIGRlcmVjaG8gZGUgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVsZWN0csOzbmljYSwgcGFyYSBxdWUgcHVlZGEgc2VyIHV0aWxpemFkYSBkZSBmb3JtYSBsaWJyZSB5IGdyYXR1aXRhIHBvciB0b2RvcyBsb3MgcXVlIGxvIGRlc2Vlbi48L3A+DQoNCjxwPkxhIGNlc2nDs24gc2UgcmVhbGl6YSBiYWpvIGxhcyBzaWd1aWVudGVzIGNvbmRpY2lvbmVzOjwvcD4NCg0KPHA+TGEgdGl0dWxhcmlkYWQgZGUgbGEgb2JyYSBzZWd1aXLDoSBjb3JyZXNwb25kaWVuZG8gYWwgQXV0b3IgeSBsYSBwcmVzZW50ZSBjZXNpw7NuIGRlIGRlcmVjaG9zIHBlcm1pdGlyw6EgYSA8Yj5BTklJPC9iPjo8L3A+DQoNCjx1bD4NCjxsaSB2YWx1ZT0oYSk+VHJhbnNmb3JtYXIgbGEgb2JyYSBlbiBsYSBtZWRpZGEgZW4gcXVlIHNlYSBuZWNlc2FyaW8gcGFyYSBhZGFwdGFybGEgYSBjdWFscXVpZXIgdGVjbm9sb2fDrWEgc3VzY2VwdGlibGUgZGUgaW5jb3Jwb3JhY2nDs24gYSBJbnRlcm5ldDsgcmVhbGl6YXIgbGFzIGFkYXB0YWNpb25lcyBuZWNlc2FyaWFzIHBhcmEgaGFjZXIgcG9zaWJsZSBzdSBhY2Nlc28geSB2aXN1YWxpemFjacOzbiBwZXJtYW5lbnRlLCBhw7puIHBvciBwYXJ0ZSBkZSBwZXJzb25hcyBjb24gZGlzY2FwYWNpZGFkLCByZWFsaXphciBsYXMgbWlncmFjaW9uZXMgZGUgZm9ybWF0b3MgcGFyYSBhc2VndXJhciBsYSBwcmVzZXJ2YWNpw7NuIGEgbGFyZ28gcGxhem8sIGluY29ycG9yYXIgbG9zIG1ldGFkYXRvcyBuZWNlc2FyaW9zIHBhcmEgcmVhbGl6YXIgZWwgcmVnaXN0cm8gZGUgbGEgb2JyYSwgZSBpbmNvcnBvcmFyIHRhbWJpw6luIOKAnG1hcmNhcyBkZSBhZ3Vh4oCdIG8gY3VhbHF1aWVyIG90cm8gc2lzdGVtYSBkZSBzZWd1cmlkYWQgbyBkZSBwcm90ZWNjacOzbiBvIGRlIGlkZW50aWZpY2FjacOzbiBkZSBwcm9jZWRlbmNpYS4gRW4gbmluZ8O6biBjYXNvIGRpY2hhcyBtb2RpZmljYWNpb25lcyBpbXBsaWNhcsOhbiBhZHVsdGVyYWNpb25lcyBlbiBlbCBjb250ZW5pZG8gZGUgbGEgb2JyYS48L2xpPiANCjxsaSB2YWx1ZT0oYik+UmVwcm9kdWNpciBsYSBvYnJhIGVuIHVuIG1lZGlvIGRpZ2l0YWwgcGFyYSBzdSBpbmNvcnBvcmFjacOzbiBhIHNpc3RlbWFzIGRlIGLDunNxdWVkYSB5IHJlY3VwZXJhY2nDs24sIGluY2x1eWVuZG8gZWwgZGVyZWNobyBhIHJlcHJvZHVjaXIgeSBhbG1hY2VuYXJsYSBlbiBzZXJ2aWRvcmVzIHUgb3Ryb3MgbWVkaW9zIGRpZ2l0YWxlcyBhIGxvcyBlZmVjdG9zIGRlIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24uPC9saT4gDQo8bGkgdmFsdWU9KGMpPlBlcm1pdGlyIGEgbG9zIHVzdWFyaW9zIGxhIGRlc2NhcmdhIGRlIGNvcGlhcyBlbGVjdHLDs25pY2FzIGRlIGxhIG9icmEgZW4gdW4gc29wb3J0ZSBkaWdpdGFsLjwvbGk+IA0KPGxpIHZhbHVlPShkKT5SZWFsaXphciBsYSBjb211bmljYWNpw7NuIHDDumJsaWNhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGRlIGxhIG9icmEgYWNjZXNpYmxlIGRlIG1vZG8gbGlicmUgeSBncmF0dWl0byBhIHRyYXbDqXMgZGUgSW50ZXJuZXQuDQo8L3VsPg0KDQo8cD5FbiB2aXJ0dWQgZGVsIGNhcsOhY3RlciBubyBleGNsdXNpdm8gZGUgbGEgY2VzacOzbiwgZWwgQXV0b3IgY29uc2VydmEgdG9kb3MgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEsIHkgcG9kcsOhIHBvbmVybGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvIGVuIGVzdGEgeSBlbiBwb3N0ZXJpb3JlcyB2ZXJzaW9uZXMsIGEgdHJhdsOpcyBkZSBsb3MgbWVkaW9zIHF1ZSBlc3RpbWUgb3BvcnR1bm9zLjwvcD4NCg0KPHA+RWwgQXV0b3IgZGVjbGFyYSBiYWpvIGp1cmFtZW50byBxdWUgbGEgcHJlc2VudGUgY2VzacOzbiBubyBpbmZyaW5nZSBuaW5nw7puIGRlcmVjaG8gZGUgdGVyY2Vyb3MsIHlhIHNlYW4gZGUgcHJvcGllZGFkIGluZHVzdHJpYWwsIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8geSBnYXJhbnRpemEgcXVlIGVsIGNvbnRlbmlkbyBkZSBsYSBvYnJhIG5vIGF0ZW50YSBjb250cmEgbG9zIGRlcmVjaG9zIGFsIGhvbm9yLCBhIGxhIGludGltaWRhZCB5IGEgbGEgaW1hZ2VuIGRlIHRlcmNlcm9zLCBuaSBlcyBkaXNjcmltaW5hdG9yaW8uIDxiPkFOSUk8L2I+IGVzdGFyw6EgZXhlbnRhIGRlIGxhIHJldmlzacOzbiBkZWwgY29udGVuaWRvIGRlIGxhIG9icmEsIHF1ZSBlbiB0b2RvIGNhc28gcGVybWFuZWNlcsOhIGJham8gbGEgcmVzcG9uc2FiaWxpZGFkIGV4Y2x1c2l2YSBkZWwgQXV0b3IuPC9wPg0KDQo8cD5MYSBvYnJhIHNlIHBvbmRyw6EgYSBkaXNwb3NpY2nDs24gZGUgbG9zIHVzdWFyaW9zIHBhcmEgcXVlIGhhZ2FuIGRlIGVsbGEgdW4gdXNvIGp1c3RvIHkgcmVzcGV0dW9zbyBkZSBsb3MgZGVyZWNob3MgZGVsIGF1dG9yIHkgY29uIGZpbmVzIGRlIGVzdHVkaW8sIGludmVzdGlnYWNpw7NuLCBvIGN1YWxxdWllciBvdHJvIGZpbiBsw61jaXRvLiBFbCBtZW5jaW9uYWRvIHVzbywgbcOhcyBhbGzDoSBkZSBsYSBjb3BpYSBwcml2YWRhLCByZXF1ZXJpcsOhIHF1ZSBzZSBjaXRlIGxhIGZ1ZW50ZSB5IHNlIHJlY29ub3pjYSBsYSBhdXRvcsOtYS4gQSB0YWxlcyBmaW5lcyBlbCBBdXRvciBhY2VwdGEgZWwgdXNvIGRlIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zIHkgRUxJR0UgdW5hIGRlIGVzdGFzIGxpY2VuY2lhcyBlc3RhbmRhcml6YWRhcyBhIGxvcyBmaW5lcyBkZSBjb211bmljYXIgc3Ugb2JyYS48L3A+DQoNCjxwPkVsIEF1dG9yLCBjb21vIGdhcmFudGUgZGUgbGEgYXV0b3LDrWEgZGUgbGEgb2JyYSB5IGVuIHJlbGFjacOzbiBhIGxhIG1pc21hLCBkZWNsYXJhIHF1ZSA8Yj5BTklJPC9iPiBzZSBlbmN1ZW50cmEgbGlicmUgZGUgdG9kbyB0aXBvIGRlIHJlc3BvbnNhYmlsaWRhZCwgc2VhIMOpc3RhIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSBvIHBlbmFsLCB5IHF1ZSDDqWwgbWlzbW8gYXN1bWUgbGEgcmVzcG9uc2FiaWxpZGFkIGZyZW50ZSBhIGN1YWxxdWllciByZWNsYW1vIG8gZGVtYW5kYSBwb3IgcGFydGUgZGUgdGVyY2Vyb3MuIDxiPkFOSUk8L2I+IGVzdGFyw6EgZXhlbnRhIGRlIGVqZXJjaXRhciBhY2Npb25lcyBsZWdhbGVzIGVuIG5vbWJyZSBkZWwgQXV0b3IgZW4gZWwgc3VwdWVzdG8gZGUgaW5mcmFjY2lvbmVzIGEgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGRlcml2YWRvcyBkZWwgZGVww7NzaXRvIHkgYXJjaGl2byBkZSBsYSBvYnJhLjwvcD4NCg0KPHA+PGI+QU5JSTwvYj4gbm90aWZpY2Fyw6EgYWwgQXV0b3IgZGUgY3VhbHF1aWVyIHJlY2xhbWFjacOzbiBxdWUgcmVjaWJhIGRlIHRlcmNlcm9zIGVuIHJlbGFjacOzbiBjb24gbGEgb2JyYSB5LCBlbiBwYXJ0aWN1bGFyLCBkZSByZWNsYW1hY2lvbmVzIHJlbGF0aXZhcyBhIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgc29icmUgZWxsYS48L3A+DQoNCjxwPkVsIEF1dG9yIHBvZHLDoSBzb2xpY2l0YXIgZWwgcmV0aXJvIG8gbGEgaW52aXNpYmlsaXphY2nDs24gZGUgbGEgb2JyYSBkZSBSRURJIHPDs2xvIHBvciBjYXVzYSBqdXN0aWZpY2FkYS4gQSB0YWwgZmluIGRlYmVyw6EgbWFuaWZlc3RhciBzdSB2b2x1bnRhZCBlbiBmb3JtYSBmZWhhY2llbnRlIHkgYWNyZWRpdGFyIGRlYmlkYW1lbnRlIGxhIGNhdXNhIGp1c3RpZmljYWRhLiBBc2ltaXNtbyA8Yj5BTklJPC9iPiBwb2Ryw6EgcmV0aXJhciBvIGludmlzaWJpbGl6YXIgbGEgb2JyYSBkZSBSRURJLCBwcmV2aWEgbm90aWZpY2FjacOzbiBhbCBBdXRvciwgZW4gc3VwdWVzdG9zIHN1ZmljaWVudGVtZW50ZSBqdXN0aWZpY2Fkb3MsIG8gZW4gY2FzbyBkZSByZWNsYW1hY2lvbmVzIGRlIHRlcmNlcm9zLjwvcD4=Gobiernohttps://www.anii.org.uy/https://redi.anii.org.uy/oai/requestjmaldini@anii.org.uyUruguayopendoar:94212024-11-15T16:43:54REDI - Agencia Nacional de Investigación e Innovaciónfalse
spellingShingle On the Bit Complexity of Iterated Memory
Toyos-Marfurt, Guillermo
Distributed systems
Iterated memory models
Theory of computation
Combinatorial topology
Ciencias Naturales y Exactas
Ciencias de la Computación e Información
status_str publishedVersion
title On the Bit Complexity of Iterated Memory
title_full On the Bit Complexity of Iterated Memory
title_fullStr On the Bit Complexity of Iterated Memory
title_full_unstemmed On the Bit Complexity of Iterated Memory
title_short On the Bit Complexity of Iterated Memory
title_sort On the Bit Complexity of Iterated Memory
topic Distributed systems
Iterated memory models
Theory of computation
Combinatorial topology
Ciencias Naturales y Exactas
Ciencias de la Computación e Información
url https://hdl.handle.net/20.500.12381/3685
https://doi.org/10.48550/arXiv.2402.12484