Property Checking with Interpretable Error Characterization for Recurrent Neural Networks
Resumen:
This paper presents a novel on-the-fly, black-box, property-checking through learning approach as a means for verifying requirements of recurrent neural networks (RNN) in the context of sequence classification. Our technique steps on a tool for learning probably approximately correct (PAC) deterministic finite automata (DFA). The sequence classifier inside the black-box consists of a Boolean combination of several components, including the RNN under analysis together with requirements to be checked, possibly modeled as RNN themselves. On one hand, if the output of the algorithm is an empty DFA, there is a proven upper bound (as a function of the algorithm parameters) on the probability of the language of the black-box to be nonempty. This implies the property probably holds on the RNN with probabilistic guarantees. On the other, if the DFA is nonempty, it is certain that the language of the black-box is nonempty. This entails the RNN does not satisfy the requirement for sure. In this case, the output automaton serves as an explicit and interpretable characterization of the error. Our approach does not rely on a specific property specification formalism and is capable of handling nonregular languages as well. Besides, it neither explicitly builds individual representations of any of the components of the black-box nor resorts to any external decision procedure for verification. This paper also improves previous theoretical results regarding the probabilistic guarantees of the underlying learning algorithm.
2021 | |
recurrent neural networks probably approximately correct learning black-box explainability Ciencias Naturales y Exactas Ciencias de la Computación e Información |
|
Inglés | |
Agencia Nacional de Investigación e Innovación | |
REDI | |
https://hdl.handle.net/20.500.12381/457
https://doi.org/10.3390/make3010010 |
|
Acceso abierto | |
Reconocimiento 4.0 Internacional. (CC BY) |
_version_ | 1814959261672800256 |
---|---|
author | Mayr, Franz |
author2 | Yovine, Sergio Visca, Ramiro |
author2_role | author author |
author_facet | Mayr, Franz Yovine, Sergio Visca, Ramiro |
author_role | author |
bitstream.checksum.fl_str_mv | 2d97768b1a25a7df5a347bb58fd2d77f 53c5327dc1f73914f51101aed18641fa |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 |
bitstream.url.fl_str_mv | https://redi.anii.org.uy/jspui/bitstream/20.500.12381/457/2/license.txt https://redi.anii.org.uy/jspui/bitstream/20.500.12381/457/1/make-03-00010.pdf |
collection | REDI |
dc.creator.none.fl_str_mv | Mayr, Franz Yovine, Sergio Visca, Ramiro |
dc.date.accessioned.none.fl_str_mv | 2021-09-30T13:22:36Z |
dc.date.available.none.fl_str_mv | 2021-09-30T13:22:36Z |
dc.date.issued.none.fl_str_mv | 2021-02 |
dc.description.abstract.none.fl_txt_mv | This paper presents a novel on-the-fly, black-box, property-checking through learning approach as a means for verifying requirements of recurrent neural networks (RNN) in the context of sequence classification. Our technique steps on a tool for learning probably approximately correct (PAC) deterministic finite automata (DFA). The sequence classifier inside the black-box consists of a Boolean combination of several components, including the RNN under analysis together with requirements to be checked, possibly modeled as RNN themselves. On one hand, if the output of the algorithm is an empty DFA, there is a proven upper bound (as a function of the algorithm parameters) on the probability of the language of the black-box to be nonempty. This implies the property probably holds on the RNN with probabilistic guarantees. On the other, if the DFA is nonempty, it is certain that the language of the black-box is nonempty. This entails the RNN does not satisfy the requirement for sure. In this case, the output automaton serves as an explicit and interpretable characterization of the error. Our approach does not rely on a specific property specification formalism and is capable of handling nonregular languages as well. Besides, it neither explicitly builds individual representations of any of the components of the black-box nor resorts to any external decision procedure for verification. This paper also improves previous theoretical results regarding the probabilistic guarantees of the underlying learning algorithm. |
dc.identifier.anii.es.fl_str_mv | POS_ICT4V_2016_1_15, FSDA_1_2018_1_154419, FMV_1_2019_1_155913. |
dc.identifier.doi.none.fl_str_mv | https://doi.org/10.3390/make3010010 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12381/457 |
dc.language.iso.none.fl_str_mv | eng |
dc.publisher.es.fl_str_mv | MDPI |
dc.rights.es.fl_str_mv | Acceso abierto |
dc.rights.license.none.fl_str_mv | Reconocimiento 4.0 Internacional. (CC BY) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.es.fl_str_mv | Machine Learning and Knowledge Extraction |
dc.source.none.fl_str_mv | reponame:REDI instname:Agencia Nacional de Investigación e Innovación instacron:Agencia Nacional de Investigación e Innovación |
dc.subject.anii.none.fl_str_mv | Ciencias Naturales y Exactas Ciencias de la Computación e Información |
dc.subject.es.fl_str_mv | recurrent neural networks probably approximately correct learning black-box explainability |
dc.title.none.fl_str_mv | Property Checking with Interpretable Error Characterization for Recurrent Neural Networks |
dc.type.es.fl_str_mv | Artículo |
dc.type.none.fl_str_mv | info:eu-repo/semantics/article |
dc.type.version.es.fl_str_mv | Publicado |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | This paper presents a novel on-the-fly, black-box, property-checking through learning approach as a means for verifying requirements of recurrent neural networks (RNN) in the context of sequence classification. Our technique steps on a tool for learning probably approximately correct (PAC) deterministic finite automata (DFA). The sequence classifier inside the black-box consists of a Boolean combination of several components, including the RNN under analysis together with requirements to be checked, possibly modeled as RNN themselves. On one hand, if the output of the algorithm is an empty DFA, there is a proven upper bound (as a function of the algorithm parameters) on the probability of the language of the black-box to be nonempty. This implies the property probably holds on the RNN with probabilistic guarantees. On the other, if the DFA is nonempty, it is certain that the language of the black-box is nonempty. This entails the RNN does not satisfy the requirement for sure. In this case, the output automaton serves as an explicit and interpretable characterization of the error. Our approach does not rely on a specific property specification formalism and is capable of handling nonregular languages as well. Besides, it neither explicitly builds individual representations of any of the components of the black-box nor resorts to any external decision procedure for verification. This paper also improves previous theoretical results regarding the probabilistic guarantees of the underlying learning algorithm. |
eu_rights_str_mv | openAccess |
format | article |
id | REDI_05929683b16282ec6a55793d04fe5fd3 |
identifier_str_mv | POS_ICT4V_2016_1_15, FSDA_1_2018_1_154419, FMV_1_2019_1_155913. |
instacron_str | Agencia Nacional de Investigación e Innovación |
institution | Agencia Nacional de Investigación e Innovación |
instname_str | Agencia Nacional de Investigación e Innovación |
language | eng |
network_acronym_str | REDI |
network_name_str | REDI |
oai_identifier_str | oai:redi.anii.org.uy:20.500.12381/457 |
publishDate | 2021 |
reponame_str | REDI |
repository.mail.fl_str_mv | jmaldini@anii.org.uy |
repository.name.fl_str_mv | REDI - Agencia Nacional de Investigación e Innovación |
repository_id_str | 9421 |
rights_invalid_str_mv | Reconocimiento 4.0 Internacional. (CC BY) Acceso abierto |
spelling | Reconocimiento 4.0 Internacional. (CC BY)Acceso abiertoinfo:eu-repo/semantics/openAccess2021-09-30T13:22:36Z2021-09-30T13:22:36Z2021-02https://hdl.handle.net/20.500.12381/457POS_ICT4V_2016_1_15, FSDA_1_2018_1_154419, FMV_1_2019_1_155913.https://doi.org/10.3390/make3010010This paper presents a novel on-the-fly, black-box, property-checking through learning approach as a means for verifying requirements of recurrent neural networks (RNN) in the context of sequence classification. Our technique steps on a tool for learning probably approximately correct (PAC) deterministic finite automata (DFA). The sequence classifier inside the black-box consists of a Boolean combination of several components, including the RNN under analysis together with requirements to be checked, possibly modeled as RNN themselves. On one hand, if the output of the algorithm is an empty DFA, there is a proven upper bound (as a function of the algorithm parameters) on the probability of the language of the black-box to be nonempty. This implies the property probably holds on the RNN with probabilistic guarantees. On the other, if the DFA is nonempty, it is certain that the language of the black-box is nonempty. This entails the RNN does not satisfy the requirement for sure. In this case, the output automaton serves as an explicit and interpretable characterization of the error. Our approach does not rely on a specific property specification formalism and is capable of handling nonregular languages as well. Besides, it neither explicitly builds individual representations of any of the components of the black-box nor resorts to any external decision procedure for verification. This paper also improves previous theoretical results regarding the probabilistic guarantees of the underlying learning algorithm.engMDPIMachine Learning and Knowledge Extractionreponame:REDIinstname:Agencia Nacional de Investigación e Innovacióninstacron:Agencia Nacional de Investigación e Innovaciónrecurrent neural networksprobably approximately correct learningblack-box explainabilityCiencias Naturales y ExactasCiencias de la Computación e InformaciónProperty Checking with Interpretable Error Characterization for Recurrent Neural NetworksArtículoPublicadoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/article//Ciencias Naturales y Exactas/Ciencias de la Computación e Información/Ciencias de la Computación e InformaciónMayr, FranzYovine, SergioVisca, RamiroLICENSElicense.txtlicense.txttext/plain; charset=utf-84746https://redi.anii.org.uy/jspui/bitstream/20.500.12381/457/2/license.txt2d97768b1a25a7df5a347bb58fd2d77fMD52ORIGINALmake-03-00010.pdfmake-03-00010.pdfapplication/pdf1004799https://redi.anii.org.uy/jspui/bitstream/20.500.12381/457/1/make-03-00010.pdf53c5327dc1f73914f51101aed18641faMD5120.500.12381/4572021-09-30 10:22:38.275oai:redi.anii.org.uy:20.500.12381/457PHA+QWNlcHRhbmRvIGxhIGNlc2nDs24gZGUgZGVyZWNob3MgZWwgdXN1YXJpbyBERUNMQVJBIHF1ZSBvc3RlbnRhIGxhIGNvbmRpY2nDs24gZGUgYXV0b3IgZW4gZWwgc2VudGlkbyBxdWUgb3RvcmdhIGxhIGxlZ2lzbGFjacOzbiB2aWdlbnRlIHNvYnJlICBwcm9waWVkYWQgaW50ZWxlY3R1YWwgZGUgbGEgb2JyYSBvcmlnaW5hbCBxdWUgZXN0w6EgZW52aWFuZG8gKOKAnGxhIG9icmHigJ0pLiBFbiBjYXNvIGRlIHNlciBjb3RpdHVsYXIsIGVsIGF1dG9yIGRlY2xhcmEgcXVlIGN1ZW50YSBjb24gZWwgIGNvbnNlbnRpbWllbnRvIGRlIGxvcyByZXN0YW50ZXMgdGl0dWxhcmVzIHBhcmEgaGFjZXIgbGEgcHJlc2VudGUgY2VzacOzbi4gRW4gY2FzbyBkZSBwcmV2aWEgY2VzacOzbiBkZSBsb3MgZGVyZWNob3MgZGUgZXhwbG90YWNpw7NuIHNvYnJlIGxhIG9icmEgYSB0ZXJjZXJvcywgZWwgYXV0b3IgZGVjbGFyYSBxdWUgdGllbmUgbGEgYXV0b3JpemFjacOzbiBleHByZXNhIGRlIGRpY2hvcyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgYSBsb3MgZmluZXMgZGUgZXN0YSBjZXNpw7NuLCBvIGJpZW4gcXVlIGhhIGNvbnNlcnZhZG8gbGEgZmFjdWx0YWQgZGUgY2VkZXIgZXN0b3MgZGVyZWNob3MgZW4gbGEgZm9ybWEgcHJldmlzdGEgZW4gbGEgcHJlc2VudGUgY2VzacOzbi48L3A+DQoNCjxwPkNvbiBlbCBmaW4gZGUgZGFyIGxhIG3DoXhpbWEgZGlmdXNpw7NuIGEgbGEgb2JyYSBhIHRyYXbDqXMgZGUgUkVESSwgZWwgQVVUT1IgQ0VERSBhIEFOSUksIGRlIGZvcm1hIGdyYXR1aXRhIHkgTk8gRVhDTFVTSVZBLCBjb24gY2Fyw6FjdGVyIGlycmV2b2NhYmxlIGUgaWxpbWl0YWRvIGVuIGVsIHRpZW1wbyB5IGNvbiDDoW1iaXRvIG11bmRpYWwsIGxvcyBkZXJlY2hvcyBkZSByZXByb2R1Y2Npw7NuLCBkZSBkaXN0cmlidWNpw7NuLCBkZSBjb211bmljYWNpw7NuIHDDumJsaWNhLCBpbmNsdWlkbyBlbCBkZXJlY2hvIGRlIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbGVjdHLDs25pY2EsIHBhcmEgcXVlIHB1ZWRhIHNlciB1dGlsaXphZGEgZGUgZm9ybWEgbGlicmUgeSBncmF0dWl0YSBwb3IgdG9kb3MgbG9zIHF1ZSBsbyBkZXNlZW4uPC9wPg0KDQo8cD5MYSBjZXNpw7NuIHNlIHJlYWxpemEgYmFqbyBsYXMgc2lndWllbnRlcyBjb25kaWNpb25lczo8L3A+DQoNCjxwPkxhIHRpdHVsYXJpZGFkIGRlIGxhIG9icmEgc2VndWlyw6EgY29ycmVzcG9uZGllbmRvIGFsIEF1dG9yIHkgbGEgcHJlc2VudGUgY2VzacOzbiBkZSBkZXJlY2hvcyBwZXJtaXRpcsOhIGEgUkVESTo8L3A+DQoNCjx1bD4gPGxpIHZhbHVlPShhKT5UcmFuc2Zvcm1hciBsYSBvYnJhIGVuIGxhIG1lZGlkYSBlbiBxdWUgc2VhIG5lY2VzYXJpbyBwYXJhIGFkYXB0YXJsYSBhIGN1YWxxdWllciB0ZWNub2xvZ8OtYSBzdXNjZXB0aWJsZSBkZSBpbmNvcnBvcmFjacOzbiBhIEludGVybmV0OyByZWFsaXphciBsYXMgYWRhcHRhY2lvbmVzIG5lY2VzYXJpYXMgcGFyYSBoYWNlciBwb3NpYmxlIHN1IGFjY2VzbyB5IHZpc3VhbGl6YWNpw7NuIHBlcm1hbmVudGUsIGHDum4gcG9yIHBhcnRlIGRlIHBlcnNvbmFzIGNvbiBkaXNjYXBhY2lkYWQsIHJlYWxpemFyIGxhcyBtaWdyYWNpb25lcyBkZSBmb3JtYXRvcyBwYXJhIGFzZWd1cmFyIGxhIHByZXNlcnZhY2nDs24gYSBsYXJnbyBwbGF6bywgaW5jb3Jwb3JhciBsb3MgbWV0YWRhdG9zIG5lY2VzYXJpb3MgcGFyYSByZWFsaXphciBlbCByZWdpc3RybyBkZSBsYSBvYnJhLCBlIGluY29ycG9yYXIgdGFtYmnDqW4g4oCcbWFyY2FzIGRlIGFndWHigJ0gbyBjdWFscXVpZXIgb3RybyBzaXN0ZW1hIGRlIHNlZ3VyaWRhZCBvIGRlIHByb3RlY2Npw7NuIG8gZGUgaWRlbnRpZmljYWNpw7NuIGRlIHByb2NlZGVuY2lhLiBFbiBuaW5nw7puIGNhc28gZGljaGFzIG1vZGlmaWNhY2lvbmVzIGltcGxpY2Fyw6FuIGFkdWx0ZXJhY2lvbmVzIGVuIGVsIGNvbnRlbmlkbyBkZSBsYSBvYnJhLjwvbGk+IA0KPGxpIHZhbHVlPShiKT5SZXByb2R1Y2lyIGxhIG9icmEgZW4gdW4gbWVkaW8gZGlnaXRhbCBwYXJhIHN1IGluY29ycG9yYWNpw7NuIGEgc2lzdGVtYXMgZGUgYsO6c3F1ZWRhIHkgcmVjdXBlcmFjacOzbiwgaW5jbHV5ZW5kbyBlbCBkZXJlY2hvIGEgcmVwcm9kdWNpciB5IGFsbWFjZW5hcmxhIGVuIHNlcnZpZG9yZXMgdSBvdHJvcyBtZWRpb3MgZGlnaXRhbGVzIGEgbG9zIGVmZWN0b3MgZGUgc2VndXJpZGFkIHkgcHJlc2VydmFjacOzbi48L2xpPiANCjxsaSB2YWx1ZT0oYyk+UGVybWl0aXIgYSBsb3MgdXN1YXJpb3MgbGEgZGVzY2FyZ2EgZGUgY29waWFzIGVsZWN0csOzbmljYXMgZGUgbGEgb2JyYSBlbiB1biBzb3BvcnRlIGRpZ2l0YWwuPC9saT4gDQo8bGkgdmFsdWU9KGQpPlJlYWxpemFyIGxhIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGUgbGEgb2JyYSBhY2Nlc2libGUgZGUgbW9kbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldC48L3VsPg0KDQo8cD5FbiB2aXJ0dWQgZGVsIGNhcsOhY3RlciBubyBleGNsdXNpdm8gZGUgbGEgY2VzacOzbiwgZWwgQXV0b3IgY29uc2VydmEgdG9kb3MgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEsIHkgcG9kcsOhIHBvbmVybGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvIGVuIGVzdGEgeSBlbiBwb3N0ZXJpb3JlcyB2ZXJzaW9uZXMsIGEgdHJhdsOpcyBkZSBsb3MgbWVkaW9zIHF1ZSBlc3RpbWUgb3BvcnR1bm9zLjwvcD4NCg0KPHA+RWwgQXV0b3IgZGVjbGFyYSBiYWpvIGp1cmFtZW50byBxdWUgbGEgcHJlc2VudGUgY2VzacOzbiBubyBpbmZyaW5nZSBuaW5nw7puIGRlcmVjaG8gZGUgdGVyY2Vyb3MsIHlhIHNlYW4gZGUgcHJvcGllZGFkIGluZHVzdHJpYWwsIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8geSBnYXJhbnRpemEgcXVlIGVsIGNvbnRlbmlkbyBkZSBsYSBvYnJhIG5vIGF0ZW50YSBjb250cmEgbG9zIGRlcmVjaG9zIGFsIGhvbm9yLCBhIGxhIGludGltaWRhZCB5IGEgbGEgaW1hZ2VuIGRlIHRlcmNlcm9zLCBuaSBlcyBkaXNjcmltaW5hdG9yaW8uIFJFREkgZXN0YXLDoSBleGVudG8gZGUgbGEgcmV2aXNpw7NuIGRlbCBjb250ZW5pZG8gZGUgbGEgb2JyYSwgcXVlIGVuIHRvZG8gY2FzbyBwZXJtYW5lY2Vyw6EgYmFqbyBsYSByZXNwb25zYWJpbGlkYWQgZXhjbHVzaXZhIGRlbCBBdXRvci48L3A+DQoNCjxwPkxhIG9icmEgc2UgcG9uZHLDoSBhIGRpc3Bvc2ljacOzbiBkZSBsb3MgdXN1YXJpb3MgcGFyYSBxdWUgaGFnYW4gZGUgZWxsYSB1biB1c28ganVzdG8geSByZXNwZXR1b3NvIGRlIGxvcyBkZXJlY2hvcyBkZWwgYXV0b3IgeSBjb24gZmluZXMgZGUgZXN0dWRpbywgaW52ZXN0aWdhY2nDs24sIG8gY3VhbHF1aWVyIG90cm8gZmluIGzDrWNpdG8uIEVsIG1lbmNpb25hZG8gdXNvLCBtw6FzIGFsbMOhIGRlIGxhIGNvcGlhIHByaXZhZGEsIHJlcXVlcmlyw6EgcXVlIHNlIGNpdGUgbGEgZnVlbnRlIHkgc2UgcmVjb25vemNhIGxhIGF1dG9yw61hLiBBIHRhbGVzIGZpbmVzIGVsIEF1dG9yIGFjZXB0YSBlbCB1c28gZGUgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMgeSBFTElHRSB1bmEgZGUgZXN0YXMgbGljZW5jaWFzIGVzdGFuZGFyaXphZGFzIGEgbG9zIGZpbmVzIGRlIGNvbXVuaWNhciBzdSBvYnJhLjwvcD4NCg0KPHA+RWwgQXV0b3IsIGNvbW8gZ2FyYW50ZSBkZSBsYSBhdXRvcsOtYSBkZSBsYSBvYnJhIHkgZW4gcmVsYWNpw7NuIGEgbGEgbWlzbWEsIGRlY2xhcmEgcXVlIGxhIEFOSUkgc2UgZW5jdWVudHJhIGxpYnJlIGRlIHRvZG8gdGlwbyBkZSByZXNwb25zYWJpbGlkYWQsIHNlYSDDqXN0YSBjaXZpbCwgYWRtaW5pc3RyYXRpdmEgbyBwZW5hbCwgeSBxdWUgw6lsIG1pc21vIGFzdW1lIGxhIHJlc3BvbnNhYmlsaWRhZCBmcmVudGUgYSBjdWFscXVpZXIgcmVjbGFtbyBvIGRlbWFuZGEgcG9yIHBhcnRlIGRlIHRlcmNlcm9zLiBMQSBBTklJIGVzdGFyw6EgZXhlbnRhIGRlIGVqZXJjaXRhciBhY2Npb25lcyBsZWdhbGVzIGVuIG5vbWJyZSBkZWwgQXV0b3IgZW4gZWwgc3VwdWVzdG8gZGUgaW5mcmFjY2lvbmVzIGEgZGVyZWNob3MgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGRlcml2YWRvcyBkZWwgZGVww7NzaXRvIHkgYXJjaGl2byBkZSBsYSBvYnJhLjwvcD4NCg0KPHA+QU5JSSBub3RpZmljYXLDoSBhbCBBdXRvciBkZSBjdWFscXVpZXIgcmVjbGFtYWNpw7NuIHF1ZSByZWNpYmEgZGUgdGVyY2Vyb3MgZW4gcmVsYWNpw7NuIGNvbiBsYSBvYnJhIHksIGVuIHBhcnRpY3VsYXIsIGRlIHJlY2xhbWFjaW9uZXMgcmVsYXRpdmFzIGEgbG9zIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBzb2JyZSBlbGxhLjwvcD4NCg0KPHA+RWwgQXV0b3IgcG9kcsOhIHNvbGljaXRhciBlbCByZXRpcm8gbyBsYSBpbnZpc2liaWxpemFjacOzbiBkZSBsYSBvYnJhIGRlIFJFREkgc8OzbG8gcG9yIGNhdXNhIGp1c3RpZmljYWRhLiBBIHRhbCBmaW4gZGViZXLDoSBtYW5pZmVzdGFyIHN1IHZvbHVudGFkIGVuIGZvcm1hIGZlaGFjaWVudGUgeSBhY3JlZGl0YXIgZGViaWRhbWVudGUgbGEgY2F1c2EganVzdGlmaWNhZGEuIEFzaW1pc21vIEFOSUkgcG9kcsOhIHJldGlyYXIgbyBpbnZpc2liaWxpemFyIGxhIG9icmEgZGUgUkVESSwgcHJldmlhIG5vdGlmaWNhY2nDs24gYWwgQXV0b3IsIGVuIHN1cHVlc3RvcyBzdWZpY2llbnRlbWVudGUganVzdGlmaWNhZG9zLCBvIGVuIGNhc28gZGUgcmVjbGFtYWNpb25lcyBkZSB0ZXJjZXJvcy48L3A+Gobiernohttps://www.anii.org.uy/https://redi.anii.org.uy/oai/requestjmaldini@anii.org.uyUruguayopendoar:94212021-09-30T13:22:38REDI - Agencia Nacional de Investigación e Innovaciónfalse |
spellingShingle | Property Checking with Interpretable Error Characterization for Recurrent Neural Networks Mayr, Franz recurrent neural networks probably approximately correct learning black-box explainability Ciencias Naturales y Exactas Ciencias de la Computación e Información |
status_str | publishedVersion |
title | Property Checking with Interpretable Error Characterization for Recurrent Neural Networks |
title_full | Property Checking with Interpretable Error Characterization for Recurrent Neural Networks |
title_fullStr | Property Checking with Interpretable Error Characterization for Recurrent Neural Networks |
title_full_unstemmed | Property Checking with Interpretable Error Characterization for Recurrent Neural Networks |
title_short | Property Checking with Interpretable Error Characterization for Recurrent Neural Networks |
title_sort | Property Checking with Interpretable Error Characterization for Recurrent Neural Networks |
topic | recurrent neural networks probably approximately correct learning black-box explainability Ciencias Naturales y Exactas Ciencias de la Computación e Información |
url | https://hdl.handle.net/20.500.12381/457 https://doi.org/10.3390/make3010010 |