A RISC-V based medical implantable SOC for high voltage a current tissue stimulus
Resumen:
A RISC-V based System on Chip (SoC) for high voltage and current tissue stimulus, targeting implantable medical devices, is presented. The circuit is designed in a 0.18μm HV-CMOS process, including the RISC-V 32RVI based microcontroller core, called Siwa —which includes SPI, UART and GPIO interfaces, a packet-based bus and memory controller, and 8kB SRAM—, combined with several biological tissue stimulus and sensing circuits. The complete test chip (analog+RISC-V) occupies a 5mm2 area but only 0.82mm2 correspond to the RISCV micro-controller, which operates up to 20MHz, with average energy needs of less than 48 pJ/cycle (3pJ STD), and for which several reliability and safety issues were considered.
2020 | |
Agencia Nacional de Investigación e Innovación | |
Implantable medical devices CMOS HV RISC-V Level shifter Current sources Biomedical circuits |
|
Inglés | |
Universidad Católica del Uruguay | |
LIBERI | |
https://hdl.handle.net/10895/1550 | |
Acceso abierto | |
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0) |
Sumario: | A RISC-V based System on Chip (SoC) for high voltage and current tissue stimulus, targeting implantable medical devices, is presented. The circuit is designed in a 0.18μm HV-CMOS process, including the RISC-V 32RVI based microcontroller core, called Siwa —which includes SPI, UART and GPIO interfaces, a packet-based bus and memory controller, and 8kB SRAM—, combined with several biological tissue stimulus and sensing circuits. The complete test chip (analog+RISC-V) occupies a 5mm2 area but only 0.82mm2 correspond to the RISCV micro-controller, which operates up to 20MHz, with average energy needs of less than 48 pJ/cycle (3pJ STD), and for which several reliability and safety issues were considered. |
---|