Valorization of Pinus taeda hemicellulosic hydrolysate for the production of value-added compounds in an ethanol biorefinery

YAMAKAWA, CELINA - D'IMPERIO, ILARIA - BONFIGLIO, FERNANDO - MUSSATTO, SOLANGE I.

Resumen:

Production of cellulosic ethanol from lignocellulosic biomass leads to the generation of a hemicellulosic hydrolysate during the feedstock pretreatment. This hydrolysate is rich in sugars, but also contains inhibitory compounds (mainly acetic acid and phenolic compounds) in concentrations that may be toxic to microbial growth. Currently, this side-stream of the cellulosic ethanol production process is processed as a waste, due to the lack of feasible alternatives for tackling the complexity of wood hemicellulosic hydrolysate. Thus, this work evaluated the ability of six microorganisms to metabolize the raw and detoxified hemicellulosic hydrolysate produced from Pinus taeda for the production of lactic acid, ethanol, xylitol, single-cell protein, lipids and carotenoids, with the aim of selecting a potential alternative for valorization of this side stream generated during the production of cellulosic ethanol contributing to the implementation of a sustainable advanced biorefinery. The tested microorganisms included a lactic acid bacterium, Bacillus coagulans; a probiotic bacterium, Lactobacillus salivarius; two oleaginous yeasts, Rhodosporidium toruloides and Saitoella coloradoensis; a thermotolerant yeast, Kluyveromyces marxianus; and a methylotrophic yeast, Hansenula polymorpha. L. salivarius, K. marxianus, and H. polymorpha showed promising ability to metabolize the partially detoxified hydrolysate (composed of (g/L): mannose, 29.27; glucose, 17.25; galactose, 6.18; xylose, 4.94; arabinose, 1.23; acetic acid, 7.99; formic acid, 4.86; levulinic acid, 4.04; 5-hydroxymethylfurfural, 0.74; total phenolic compounds, 0.40). On the other hand, the oleaginous yeasts and B. coagulans presented high sensitivity to the inhibitory compounds. L. salivarius produced lactic acid with high yield (1.1 g/g), which was limited by product inhibition. K. marxianus produced xylitol at 0.37 g/g xylose and ethanol at 0.19 g/g hexoses. Finally, H. polymorpha converted hexoses and acetic acid into single-cell protein with yield of 0.27 g/g. The production of lactic acid by L. salivarius proved to be a promising alternative for valorization of Pinus hemicellulosic hydrolysate in an ethanol biorefinery.


Detalles Bibliográficos
2022
ÁCIDO LÁCTICO
ETANOL
LIGNOCELULOSA
PINO
REFINADO
Inglés
Laboratorio Tecnológico del Uruguay
Catálogo digital del LATU
https://catalogo.latu.org.uy/opac_css/index.php?lvl=notice_display&id=32534
Acceso abierto
CC BY
_version_ 1807353832460517376
author YAMAKAWA, CELINA
author2 D'IMPERIO, ILARIA
BONFIGLIO, FERNANDO
MUSSATTO, SOLANGE I.
author2_role author
author
author
author_facet YAMAKAWA, CELINA
D'IMPERIO, ILARIA
BONFIGLIO, FERNANDO
MUSSATTO, SOLANGE I.
author_role author
collection Catálogo digital del LATU
dc.coverage.none.fl_str_mv En: Fuel, 318, 123489. DOI: https://doi.org/10.1016/j.fuel.2022.123489
dc.creator.none.fl_str_mv YAMAKAWA, CELINA
D'IMPERIO, ILARIA
BONFIGLIO, FERNANDO
MUSSATTO, SOLANGE I.
dc.date.none.fl_str_mv 2022-01-01
dc.description.abstract.none.fl_txt_mv Production of cellulosic ethanol from lignocellulosic biomass leads to the generation of a hemicellulosic hydrolysate during the feedstock pretreatment. This hydrolysate is rich in sugars, but also contains inhibitory compounds (mainly acetic acid and phenolic compounds) in concentrations that may be toxic to microbial growth. Currently, this side-stream of the cellulosic ethanol production process is processed as a waste, due to the lack of feasible alternatives for tackling the complexity of wood hemicellulosic hydrolysate. Thus, this work evaluated the ability of six microorganisms to metabolize the raw and detoxified hemicellulosic hydrolysate produced from Pinus taeda for the production of lactic acid, ethanol, xylitol, single-cell protein, lipids and carotenoids, with the aim of selecting a potential alternative for valorization of this side stream generated during the production of cellulosic ethanol contributing to the implementation of a sustainable advanced biorefinery. The tested microorganisms included a lactic acid bacterium, Bacillus coagulans; a probiotic bacterium, Lactobacillus salivarius; two oleaginous yeasts, Rhodosporidium toruloides and Saitoella coloradoensis; a thermotolerant yeast, Kluyveromyces marxianus; and a methylotrophic yeast, Hansenula polymorpha. L. salivarius, K. marxianus, and H. polymorpha showed promising ability to metabolize the partially detoxified hydrolysate (composed of (g/L): mannose, 29.27; glucose, 17.25; galactose, 6.18; xylose, 4.94; arabinose, 1.23; acetic acid, 7.99; formic acid, 4.86; levulinic acid, 4.04; 5-hydroxymethylfurfural, 0.74; total phenolic compounds, 0.40). On the other hand, the oleaginous yeasts and B. coagulans presented high sensitivity to the inhibitory compounds. L. salivarius produced lactic acid with high yield (1.1 g/g), which was limited by product inhibition. K. marxianus produced xylitol at 0.37 g/g xylose and ethanol at 0.19 g/g hexoses. Finally, H. polymorpha converted hexoses and acetic acid into single-cell protein with yield of 0.27 g/g. The production of lactic acid by L. salivarius proved to be a promising alternative for valorization of Pinus hemicellulosic hydrolysate in an ethanol biorefinery.
dc.format.none.fl_str_mv Pdf
dc.identifier.none.fl_str_mv https://catalogo.latu.org.uy/opac_css/index.php?lvl=notice_display&id=32534
32534
urn:ISBN:69496
dc.language.iso.none.fl_str_mv eng
dc.rights.license.none.fl_str_mv CC BY
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
CC BY
dc.source.none.fl_str_mv reponame:Catálogo digital del LATU
instname:Laboratorio Tecnológico del Uruguay
instacron:Laboratorio Tecnológico del Uruguay
dc.subject.none.fl_str_mv ÁCIDO LÁCTICO
ETANOL
LIGNOCELULOSA
PINO
REFINADO
dc.title.none.fl_str_mv Valorization of Pinus taeda hemicellulosic hydrolysate for the production of value-added compounds in an ethanol biorefinery
dc.type.none.fl_str_mv info:eu-repo/semantics/article
Publicado
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description Production of cellulosic ethanol from lignocellulosic biomass leads to the generation of a hemicellulosic hydrolysate during the feedstock pretreatment. This hydrolysate is rich in sugars, but also contains inhibitory compounds (mainly acetic acid and phenolic compounds) in concentrations that may be toxic to microbial growth. Currently, this side-stream of the cellulosic ethanol production process is processed as a waste, due to the lack of feasible alternatives for tackling the complexity of wood hemicellulosic hydrolysate. Thus, this work evaluated the ability of six microorganisms to metabolize the raw and detoxified hemicellulosic hydrolysate produced from Pinus taeda for the production of lactic acid, ethanol, xylitol, single-cell protein, lipids and carotenoids, with the aim of selecting a potential alternative for valorization of this side stream generated during the production of cellulosic ethanol contributing to the implementation of a sustainable advanced biorefinery. The tested microorganisms included a lactic acid bacterium, Bacillus coagulans; a probiotic bacterium, Lactobacillus salivarius; two oleaginous yeasts, Rhodosporidium toruloides and Saitoella coloradoensis; a thermotolerant yeast, Kluyveromyces marxianus; and a methylotrophic yeast, Hansenula polymorpha. L. salivarius, K. marxianus, and H. polymorpha showed promising ability to metabolize the partially detoxified hydrolysate (composed of (g/L): mannose, 29.27; glucose, 17.25; galactose, 6.18; xylose, 4.94; arabinose, 1.23; acetic acid, 7.99; formic acid, 4.86; levulinic acid, 4.04; 5-hydroxymethylfurfural, 0.74; total phenolic compounds, 0.40). On the other hand, the oleaginous yeasts and B. coagulans presented high sensitivity to the inhibitory compounds. L. salivarius produced lactic acid with high yield (1.1 g/g), which was limited by product inhibition. K. marxianus produced xylitol at 0.37 g/g xylose and ethanol at 0.19 g/g hexoses. Finally, H. polymorpha converted hexoses and acetic acid into single-cell protein with yield of 0.27 g/g. The production of lactic acid by L. salivarius proved to be a promising alternative for valorization of Pinus hemicellulosic hydrolysate in an ethanol biorefinery.
eu_rights_str_mv openAccess
format article
id LATU_9268eb8dc18d0e702a3381fb296930e3
identifier_str_mv 32534
urn:ISBN:69496
instacron_str Laboratorio Tecnológico del Uruguay
institution Laboratorio Tecnológico del Uruguay
instname_str Laboratorio Tecnológico del Uruguay
language eng
network_acronym_str LATU
network_name_str Catálogo digital del LATU
oai_identifier_str oai:PMBOAI:32534
publishDate 2022
reponame_str Catálogo digital del LATU
repository.mail.fl_str_mv lfiori@latu.org.uy
repository.name.fl_str_mv Catálogo digital del LATU - Laboratorio Tecnológico del Uruguay
repository_id_str
rights_invalid_str_mv CC BY
CC BY
spelling Valorization of Pinus taeda hemicellulosic hydrolysate for the production of value-added compounds in an ethanol biorefineryYAMAKAWA, CELINAD'IMPERIO, ILARIABONFIGLIO, FERNANDOMUSSATTO, SOLANGE I.ÁCIDO LÁCTICOETANOLLIGNOCELULOSAPINOREFINADOProduction of cellulosic ethanol from lignocellulosic biomass leads to the generation of a hemicellulosic hydrolysate during the feedstock pretreatment. This hydrolysate is rich in sugars, but also contains inhibitory compounds (mainly acetic acid and phenolic compounds) in concentrations that may be toxic to microbial growth. Currently, this side-stream of the cellulosic ethanol production process is processed as a waste, due to the lack of feasible alternatives for tackling the complexity of wood hemicellulosic hydrolysate. Thus, this work evaluated the ability of six microorganisms to metabolize the raw and detoxified hemicellulosic hydrolysate produced from Pinus taeda for the production of lactic acid, ethanol, xylitol, single-cell protein, lipids and carotenoids, with the aim of selecting a potential alternative for valorization of this side stream generated during the production of cellulosic ethanol contributing to the implementation of a sustainable advanced biorefinery. The tested microorganisms included a lactic acid bacterium, Bacillus coagulans; a probiotic bacterium, Lactobacillus salivarius; two oleaginous yeasts, Rhodosporidium toruloides and Saitoella coloradoensis; a thermotolerant yeast, Kluyveromyces marxianus; and a methylotrophic yeast, Hansenula polymorpha. L. salivarius, K. marxianus, and H. polymorpha showed promising ability to metabolize the partially detoxified hydrolysate (composed of (g/L): mannose, 29.27; glucose, 17.25; galactose, 6.18; xylose, 4.94; arabinose, 1.23; acetic acid, 7.99; formic acid, 4.86; levulinic acid, 4.04; 5-hydroxymethylfurfural, 0.74; total phenolic compounds, 0.40). On the other hand, the oleaginous yeasts and B. coagulans presented high sensitivity to the inhibitory compounds. L. salivarius produced lactic acid with high yield (1.1 g/g), which was limited by product inhibition. K. marxianus produced xylitol at 0.37 g/g xylose and ethanol at 0.19 g/g hexoses. Finally, H. polymorpha converted hexoses and acetic acid into single-cell protein with yield of 0.27 g/g. The production of lactic acid by L. salivarius proved to be a promising alternative for valorization of Pinus hemicellulosic hydrolysate in an ethanol biorefinery.2022-01-01info:eu-repo/semantics/articlePublicadoinfo:eu-repo/semantics/publishedVersionPdfhttps://catalogo.latu.org.uy/opac_css/index.php?lvl=notice_display&id=3253432534urn:ISBN:69496engEn: Fuel, 318, 123489. DOI: https://doi.org/10.1016/j.fuel.2022.123489info:eu-repo/semantics/openAccessCC BYCC BYreponame:Catálogo digital del LATUinstname:Laboratorio Tecnológico del Uruguayinstacron:Laboratorio Tecnológico del Uruguay2022-05-03T21:08:06Zoai:PMBOAI:32534Gobiernohttps://latu.org.uy/https://catalogo.latu.org.uy/ws/PMBOAIlfiori@latu.org.uyUruguayopendoar:2024-08-01T14:49:00.816015Catálogo digital del LATU - Laboratorio Tecnológico del Uruguayfalse
spellingShingle Valorization of Pinus taeda hemicellulosic hydrolysate for the production of value-added compounds in an ethanol biorefinery
YAMAKAWA, CELINA
ÁCIDO LÁCTICO
ETANOL
LIGNOCELULOSA
PINO
REFINADO
status_str publishedVersion
title Valorization of Pinus taeda hemicellulosic hydrolysate for the production of value-added compounds in an ethanol biorefinery
title_full Valorization of Pinus taeda hemicellulosic hydrolysate for the production of value-added compounds in an ethanol biorefinery
title_fullStr Valorization of Pinus taeda hemicellulosic hydrolysate for the production of value-added compounds in an ethanol biorefinery
title_full_unstemmed Valorization of Pinus taeda hemicellulosic hydrolysate for the production of value-added compounds in an ethanol biorefinery
title_short Valorization of Pinus taeda hemicellulosic hydrolysate for the production of value-added compounds in an ethanol biorefinery
title_sort Valorization of Pinus taeda hemicellulosic hydrolysate for the production of value-added compounds in an ethanol biorefinery
topic ÁCIDO LÁCTICO
ETANOL
LIGNOCELULOSA
PINO
REFINADO
url https://catalogo.latu.org.uy/opac_css/index.php?lvl=notice_display&id=32534