Xylitol production by a Wickerhamomyces anomalus strain adapted for enhanced tolerance to sugarcane bagasse hemicellulosic hydrolysate with high content of fermentation inhibitors
Resumen:
Xylitol, a five-carbon polyalcohol, is used in the food and pharmaceutical industries and as a building block in the synthesis of high-value chemicals. It can be sustainably produced from renewable sources through xylose assimilating microbe fermentation. Results: We screened microbial strains for xylitol production and identified Wickerhamomyces anomalus Z1 as a key xylitol producer. Utilizing lignocellulosic biomass hydrolysates for xylitol production poses challenges due to microbial sensitivity to inhibitors from biomass pre-treatment. In this study, an adaptive laboratory evolution (ALE) of W. anomalus Z1 was performed by culturing the yeast in a mineral medium supplemented with gradual increases of sugarcane bagasse hemicellulosic hydrolysate (SCHH) obtained by intensified steam explosion pretreatment. The performance of the adapted yeast, named Wickerhamomyces anomalus ALE, was assessed in comparison to the wild-type strain regarding its capacity to produce xylitol using SCHH. The evolved yeast reached a xylitol yield of 0.11 g xylitol/g xylose whereas the wild-type strain could not produce xylitol. Removing acetic acid from SCHH enhanced W.
2024 | |
BIOMASA CELULOSA FERMENTACIÓN |
|
Inglés | |
Laboratorio Tecnológico del Uruguay | |
Catálogo digital del LATU | |
https://catalogo.latu.org.uy/opac_css/index.php?lvl=notice_display&id=32876 | |
Acceso abierto | |
CC BY |
_version_ | 1815507551930810368 |
---|---|
author | BONFIGLIO, FERNANDO |
author2 | CAGNO, MATÍAS NÚÑEZ, LUCÍA CASTRO, ROSSINA BOTTO, EMILIANA RODRÍGUEZ, PAULA |
author2_role | author author author author author |
author_facet | BONFIGLIO, FERNANDO CAGNO, MATÍAS NÚÑEZ, LUCÍA CASTRO, ROSSINA BOTTO, EMILIANA RODRÍGUEZ, PAULA |
author_role | author |
collection | Catálogo digital del LATU |
dc.coverage.none.fl_str_mv | En: Electronic Journal of Biotechnology, 71, pp. 37–46. DOI: https://doi.org/10.1016/j.ejbt.2024.05.004 |
dc.creator.none.fl_str_mv | BONFIGLIO, FERNANDO CAGNO, MATÍAS NÚÑEZ, LUCÍA CASTRO, ROSSINA BOTTO, EMILIANA RODRÍGUEZ, PAULA |
dc.date.none.fl_str_mv | 2024-01-01 |
dc.description.abstract.none.fl_txt_mv | Xylitol, a five-carbon polyalcohol, is used in the food and pharmaceutical industries and as a building block in the synthesis of high-value chemicals. It can be sustainably produced from renewable sources through xylose assimilating microbe fermentation. Results: We screened microbial strains for xylitol production and identified Wickerhamomyces anomalus Z1 as a key xylitol producer. Utilizing lignocellulosic biomass hydrolysates for xylitol production poses challenges due to microbial sensitivity to inhibitors from biomass pre-treatment. In this study, an adaptive laboratory evolution (ALE) of W. anomalus Z1 was performed by culturing the yeast in a mineral medium supplemented with gradual increases of sugarcane bagasse hemicellulosic hydrolysate (SCHH) obtained by intensified steam explosion pretreatment. The performance of the adapted yeast, named Wickerhamomyces anomalus ALE, was assessed in comparison to the wild-type strain regarding its capacity to produce xylitol using SCHH. The evolved yeast reached a xylitol yield of 0.11 g xylitol/g xylose whereas the wild-type strain could not produce xylitol. Removing acetic acid from SCHH enhanced W. |
dc.format.none.fl_str_mv | Pdf |
dc.identifier.none.fl_str_mv | https://catalogo.latu.org.uy/opac_css/index.php?lvl=notice_display&id=32876 32876 urn:ISBN:69738 |
dc.language.iso.none.fl_str_mv | eng |
dc.rights.license.none.fl_str_mv | CC BY |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess CC BY |
dc.source.none.fl_str_mv | reponame:Catálogo digital del LATU instname:Laboratorio Tecnológico del Uruguay instacron:Laboratorio Tecnológico del Uruguay |
dc.subject.none.fl_str_mv | BIOMASA CELULOSA FERMENTACIÓN |
dc.title.none.fl_str_mv | Xylitol production by a Wickerhamomyces anomalus strain adapted for enhanced tolerance to sugarcane bagasse hemicellulosic hydrolysate with high content of fermentation inhibitors |
dc.type.none.fl_str_mv | info:eu-repo/semantics/article Publicado |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | Xylitol, a five-carbon polyalcohol, is used in the food and pharmaceutical industries and as a building block in the synthesis of high-value chemicals. It can be sustainably produced from renewable sources through xylose assimilating microbe fermentation. Results: We screened microbial strains for xylitol production and identified Wickerhamomyces anomalus Z1 as a key xylitol producer. Utilizing lignocellulosic biomass hydrolysates for xylitol production poses challenges due to microbial sensitivity to inhibitors from biomass pre-treatment. In this study, an adaptive laboratory evolution (ALE) of W. anomalus Z1 was performed by culturing the yeast in a mineral medium supplemented with gradual increases of sugarcane bagasse hemicellulosic hydrolysate (SCHH) obtained by intensified steam explosion pretreatment. The performance of the adapted yeast, named Wickerhamomyces anomalus ALE, was assessed in comparison to the wild-type strain regarding its capacity to produce xylitol using SCHH. The evolved yeast reached a xylitol yield of 0.11 g xylitol/g xylose whereas the wild-type strain could not produce xylitol. Removing acetic acid from SCHH enhanced W. |
eu_rights_str_mv | openAccess |
format | article |
id | LATU_7253f4805d813b5b0b0cd3812437368f |
identifier_str_mv | 32876 urn:ISBN:69738 |
instacron_str | Laboratorio Tecnológico del Uruguay |
institution | Laboratorio Tecnológico del Uruguay |
instname_str | Laboratorio Tecnológico del Uruguay |
language | eng |
network_acronym_str | LATU |
network_name_str | Catálogo digital del LATU |
oai_identifier_str | oai:PMBOAI:32876 |
publishDate | 2024 |
reponame_str | Catálogo digital del LATU |
repository.mail.fl_str_mv | lfiori@latu.org.uy |
repository.name.fl_str_mv | Catálogo digital del LATU - Laboratorio Tecnológico del Uruguay |
repository_id_str | |
rights_invalid_str_mv | CC BY CC BY |
spelling | Xylitol production by a Wickerhamomyces anomalus strain adapted for enhanced tolerance to sugarcane bagasse hemicellulosic hydrolysate with high content of fermentation inhibitorsBONFIGLIO, FERNANDOCAGNO, MATÍASNÚÑEZ, LUCÍACASTRO, ROSSINABOTTO, EMILIANARODRÍGUEZ, PAULABIOMASACELULOSAFERMENTACIÓNXylitol, a five-carbon polyalcohol, is used in the food and pharmaceutical industries and as a building block in the synthesis of high-value chemicals. It can be sustainably produced from renewable sources through xylose assimilating microbe fermentation. Results: We screened microbial strains for xylitol production and identified Wickerhamomyces anomalus Z1 as a key xylitol producer. Utilizing lignocellulosic biomass hydrolysates for xylitol production poses challenges due to microbial sensitivity to inhibitors from biomass pre-treatment. In this study, an adaptive laboratory evolution (ALE) of W. anomalus Z1 was performed by culturing the yeast in a mineral medium supplemented with gradual increases of sugarcane bagasse hemicellulosic hydrolysate (SCHH) obtained by intensified steam explosion pretreatment. The performance of the adapted yeast, named Wickerhamomyces anomalus ALE, was assessed in comparison to the wild-type strain regarding its capacity to produce xylitol using SCHH. The evolved yeast reached a xylitol yield of 0.11 g xylitol/g xylose whereas the wild-type strain could not produce xylitol. Removing acetic acid from SCHH enhanced W.2024-01-01info:eu-repo/semantics/articlePublicadoinfo:eu-repo/semantics/publishedVersionPdfhttps://catalogo.latu.org.uy/opac_css/index.php?lvl=notice_display&id=3287632876urn:ISBN:69738engEn: Electronic Journal of Biotechnology, 71, pp. 37–46. DOI: https://doi.org/10.1016/j.ejbt.2024.05.004info:eu-repo/semantics/openAccessCC BYCC BYreponame:Catálogo digital del LATUinstname:Laboratorio Tecnológico del Uruguayinstacron:Laboratorio Tecnológico del Uruguay2024-11-08T17:48:12Zoai:PMBOAI:32876Gobiernohttps://latu.org.uy/https://catalogo.latu.org.uy/ws/PMBOAIlfiori@latu.org.uyUruguayopendoar:2024-11-08T17:48:12Catálogo digital del LATU - Laboratorio Tecnológico del Uruguayfalse |
spellingShingle | Xylitol production by a Wickerhamomyces anomalus strain adapted for enhanced tolerance to sugarcane bagasse hemicellulosic hydrolysate with high content of fermentation inhibitors BONFIGLIO, FERNANDO BIOMASA CELULOSA FERMENTACIÓN |
status_str | publishedVersion |
title | Xylitol production by a Wickerhamomyces anomalus strain adapted for enhanced tolerance to sugarcane bagasse hemicellulosic hydrolysate with high content of fermentation inhibitors |
title_full | Xylitol production by a Wickerhamomyces anomalus strain adapted for enhanced tolerance to sugarcane bagasse hemicellulosic hydrolysate with high content of fermentation inhibitors |
title_fullStr | Xylitol production by a Wickerhamomyces anomalus strain adapted for enhanced tolerance to sugarcane bagasse hemicellulosic hydrolysate with high content of fermentation inhibitors |
title_full_unstemmed | Xylitol production by a Wickerhamomyces anomalus strain adapted for enhanced tolerance to sugarcane bagasse hemicellulosic hydrolysate with high content of fermentation inhibitors |
title_short | Xylitol production by a Wickerhamomyces anomalus strain adapted for enhanced tolerance to sugarcane bagasse hemicellulosic hydrolysate with high content of fermentation inhibitors |
title_sort | Xylitol production by a Wickerhamomyces anomalus strain adapted for enhanced tolerance to sugarcane bagasse hemicellulosic hydrolysate with high content of fermentation inhibitors |
topic | BIOMASA CELULOSA FERMENTACIÓN |
url | https://catalogo.latu.org.uy/opac_css/index.php?lvl=notice_display&id=32876 |