A mutant allele of ζ-carotene isomerase (Z-ISO) is associated with the yellow pigmentation of the "pinalate" sweet orange mutant and reveals new insights into its role in fruit carotenogenesis.
Resumen:
Abstract.Background: Fruit coloration is one of the main quality parameters of Citrus fruit primarily determined by genetic factors. The fruit of ordinary sweet orange (Citrus sinensis) displays a pleasant orange tint due to accumulation of carotenoids, representing β,β-xanthophylls more than 80% of the total content. 'Pinalate' is a spontaneous bud mutant, or somatic mutation, derived from sweet orange 'Navelate', characterized by yellow fruits due to elevated proportions of upstream carotenes and reduced β,β-xanthophylls, which suggests a biosynthetic blockage at early steps of the carotenoid pathway. Results: To identify the molecular basis of 'Pinalate' yellow fruit, a complete characterization of carotenoids profile together with transcriptional changes in carotenoid biosynthetic genes were performed in mutant and parental fruits during development and ripening. 'Pinalate' fruit showed a distinctive carotenoid profile at all ripening stages, accumulating phytoene, phytofluene and unusual proportions of 9,15,9′-tri-cis- and 9,9′-di-cis-ζ-carotene, while content of downstream carotenoids was significantly decreased. Transcript levels for most of the carotenoid biosynthetic genes showed no alterations in 'Pinalate'; however, the steady-state level mRNA of ζ-carotene isomerase (Z-ISO), which catalyses the conversion of 9,15,9′-tri-cis- to 9,9′-di-cis-ζ-carotene, was significantly reduced both in 'Pinalate' fruit and leaf tissues. Isolation of the 'Pinalate' Z-ISO genomic sequence identified a new allele with a single nucleotide insertion at the second exon, which generates an alternative splicing site that alters Z-ISO transcripts encoding non-functional enzyme. Moreover, functional assays of citrus Z-ISO in E.coli showed that light is able to enhance a non-enzymatic isomerization of tri-cis to di-cis-ζ-carotene, which is in agreement with the partial rescue of mutant phenotype when 'Pinalate' fruits are highly exposed to light during ripening. Conclusion: A single nucleotide insertion has been identified in 'Pinalate' Z-ISO gene that results in truncated proteins. This causes a bottleneck in the carotenoid pathway with an unbalanced content of carotenes upstream to β,β-xanthophylls in fruit tissues. In chloroplastic tissues, the effects of Z-ISO alteration are mainly manifested as a reduction in total carotenoid content. Taken together, our results indicate that the spontaneous single nucleotide insertion in Z-ISO is the molecular basis of the yellow pigmentation in 'Pinalate' sweet orange and points this isomerase as an essential activity for carotenogenesis in citrus fruits. © 2019 The Author(s).
2019 | |
Carotenoid Zeta-carotene isomerase GENE EXPRESSION MUTANT Pigmentation RIPENING PLATAFORMA AGROALIMENTOS CAROTENOIDES CITRUS |
|
Inglés | |
Instituto Nacional de Investigación Agropecuaria | |
AINFO | |
http://www.ainfo.inia.uy/consulta/busca?b=pc&id=60661&biblioteca=vazio&busca=60661&qFacets=60661 | |
Acceso abierto |
_version_ | 1805580526751318016 |
---|---|
author | RODRIGO, M.J. |
author2 | LADO, J. ALÓS, E. ALQUÉZAR, B. DERY, O. HIRSCHBERG, J. ZACARÍAS, L. |
author2_role | author author author author author author |
author_facet | RODRIGO, M.J. LADO, J. ALÓS, E. ALQUÉZAR, B. DERY, O. HIRSCHBERG, J. ZACARÍAS, L. |
author_role | author |
bitstream.checksum.fl_str_mv | 56e0f740b1b6a6509d5f9a25720e066d |
bitstream.checksumAlgorithm.fl_str_mv | MD5 |
bitstream.url.fl_str_mv | https://redi.anii.org.uy/jspui/bitstream/20.500.12381/1252/1/sword-2022-10-20T22%3a32%3a57.original.xml |
collection | AINFO |
dc.creator.none.fl_str_mv | RODRIGO, M.J. LADO, J. ALÓS, E. ALQUÉZAR, B. DERY, O. HIRSCHBERG, J. ZACARÍAS, L. |
dc.date.accessioned.none.fl_str_mv | 2022-10-21T01:32:57Z |
dc.date.available.none.fl_str_mv | 2022-10-21T01:32:57Z |
dc.date.issued.none.fl_str_mv | 2019 |
dc.date.updated.none.fl_str_mv | 2022-10-21T01:32:57Z |
dc.description.abstract.none.fl_txt_mv | Abstract.Background: Fruit coloration is one of the main quality parameters of Citrus fruit primarily determined by genetic factors. The fruit of ordinary sweet orange (Citrus sinensis) displays a pleasant orange tint due to accumulation of carotenoids, representing β,β-xanthophylls more than 80% of the total content. 'Pinalate' is a spontaneous bud mutant, or somatic mutation, derived from sweet orange 'Navelate', characterized by yellow fruits due to elevated proportions of upstream carotenes and reduced β,β-xanthophylls, which suggests a biosynthetic blockage at early steps of the carotenoid pathway. Results: To identify the molecular basis of 'Pinalate' yellow fruit, a complete characterization of carotenoids profile together with transcriptional changes in carotenoid biosynthetic genes were performed in mutant and parental fruits during development and ripening. 'Pinalate' fruit showed a distinctive carotenoid profile at all ripening stages, accumulating phytoene, phytofluene and unusual proportions of 9,15,9′-tri-cis- and 9,9′-di-cis-ζ-carotene, while content of downstream carotenoids was significantly decreased. Transcript levels for most of the carotenoid biosynthetic genes showed no alterations in 'Pinalate'; however, the steady-state level mRNA of ζ-carotene isomerase (Z-ISO), which catalyses the conversion of 9,15,9′-tri-cis- to 9,9′-di-cis-ζ-carotene, was significantly reduced both in 'Pinalate' fruit and leaf tissues. Isolation of the 'Pinalate' Z-ISO genomic sequence identified a new allele with a single nucleotide insertion at the second exon, which generates an alternative splicing site that alters Z-ISO transcripts encoding non-functional enzyme. Moreover, functional assays of citrus Z-ISO in E.coli showed that light is able to enhance a non-enzymatic isomerization of tri-cis to di-cis-ζ-carotene, which is in agreement with the partial rescue of mutant phenotype when 'Pinalate' fruits are highly exposed to light during ripening. Conclusion: A single nucleotide insertion has been identified in 'Pinalate' Z-ISO gene that results in truncated proteins. This causes a bottleneck in the carotenoid pathway with an unbalanced content of carotenes upstream to β,β-xanthophylls in fruit tissues. In chloroplastic tissues, the effects of Z-ISO alteration are mainly manifested as a reduction in total carotenoid content. Taken together, our results indicate that the spontaneous single nucleotide insertion in Z-ISO is the molecular basis of the yellow pigmentation in 'Pinalate' sweet orange and points this isomerase as an essential activity for carotenogenesis in citrus fruits. © 2019 The Author(s). |
dc.identifier.none.fl_str_mv | http://www.ainfo.inia.uy/consulta/busca?b=pc&id=60661&biblioteca=vazio&busca=60661&qFacets=60661 |
dc.language.iso.none.fl_str_mv | en eng |
dc.rights.es.fl_str_mv | Acceso abierto |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:AINFO instname:Instituto Nacional de Investigación Agropecuaria instacron:Instituto Nacional de Investigación Agropecuaria |
dc.subject.none.fl_str_mv | Carotenoid Zeta-carotene isomerase GENE EXPRESSION MUTANT Pigmentation RIPENING PLATAFORMA AGROALIMENTOS CAROTENOIDES CITRUS |
dc.title.none.fl_str_mv | A mutant allele of ζ-carotene isomerase (Z-ISO) is associated with the yellow pigmentation of the "pinalate" sweet orange mutant and reveals new insights into its role in fruit carotenogenesis. |
dc.type.none.fl_str_mv | Article PublishedVersion info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | Abstract.Background: Fruit coloration is one of the main quality parameters of Citrus fruit primarily determined by genetic factors. The fruit of ordinary sweet orange (Citrus sinensis) displays a pleasant orange tint due to accumulation of carotenoids, representing β,β-xanthophylls more than 80% of the total content. 'Pinalate' is a spontaneous bud mutant, or somatic mutation, derived from sweet orange 'Navelate', characterized by yellow fruits due to elevated proportions of upstream carotenes and reduced β,β-xanthophylls, which suggests a biosynthetic blockage at early steps of the carotenoid pathway. Results: To identify the molecular basis of 'Pinalate' yellow fruit, a complete characterization of carotenoids profile together with transcriptional changes in carotenoid biosynthetic genes were performed in mutant and parental fruits during development and ripening. 'Pinalate' fruit showed a distinctive carotenoid profile at all ripening stages, accumulating phytoene, phytofluene and unusual proportions of 9,15,9′-tri-cis- and 9,9′-di-cis-ζ-carotene, while content of downstream carotenoids was significantly decreased. Transcript levels for most of the carotenoid biosynthetic genes showed no alterations in 'Pinalate'; however, the steady-state level mRNA of ζ-carotene isomerase (Z-ISO), which catalyses the conversion of 9,15,9′-tri-cis- to 9,9′-di-cis-ζ-carotene, was significantly reduced both in 'Pinalate' fruit and leaf tissues. Isolation of the 'Pinalate' Z-ISO genomic sequence identified a new allele with a single nucleotide insertion at the second exon, which generates an alternative splicing site that alters Z-ISO transcripts encoding non-functional enzyme. Moreover, functional assays of citrus Z-ISO in E.coli showed that light is able to enhance a non-enzymatic isomerization of tri-cis to di-cis-ζ-carotene, which is in agreement with the partial rescue of mutant phenotype when 'Pinalate' fruits are highly exposed to light during ripening. Conclusion: A single nucleotide insertion has been identified in 'Pinalate' Z-ISO gene that results in truncated proteins. This causes a bottleneck in the carotenoid pathway with an unbalanced content of carotenes upstream to β,β-xanthophylls in fruit tissues. In chloroplastic tissues, the effects of Z-ISO alteration are mainly manifested as a reduction in total carotenoid content. Taken together, our results indicate that the spontaneous single nucleotide insertion in Z-ISO is the molecular basis of the yellow pigmentation in 'Pinalate' sweet orange and points this isomerase as an essential activity for carotenogenesis in citrus fruits. © 2019 The Author(s). |
eu_rights_str_mv | openAccess |
format | article |
id | INIAOAI_45362c0f589b31ca9a8ef89dcedcb6b9 |
instacron_str | Instituto Nacional de Investigación Agropecuaria |
institution | Instituto Nacional de Investigación Agropecuaria |
instname_str | Instituto Nacional de Investigación Agropecuaria |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | INIAOAI |
network_name_str | AINFO |
oai_identifier_str | oai:redi.anii.org.uy:20.500.12381/1252 |
publishDate | 2019 |
reponame_str | AINFO |
repository.mail.fl_str_mv | lorrego@inia.org.uy |
repository.name.fl_str_mv | AINFO - Instituto Nacional de Investigación Agropecuaria |
repository_id_str | |
rights_invalid_str_mv | Acceso abierto |
spelling | 2022-10-21T01:32:57Z2022-10-21T01:32:57Z20192022-10-21T01:32:57Zhttp://www.ainfo.inia.uy/consulta/busca?b=pc&id=60661&biblioteca=vazio&busca=60661&qFacets=60661Abstract.Background: Fruit coloration is one of the main quality parameters of Citrus fruit primarily determined by genetic factors. The fruit of ordinary sweet orange (Citrus sinensis) displays a pleasant orange tint due to accumulation of carotenoids, representing β,β-xanthophylls more than 80% of the total content. 'Pinalate' is a spontaneous bud mutant, or somatic mutation, derived from sweet orange 'Navelate', characterized by yellow fruits due to elevated proportions of upstream carotenes and reduced β,β-xanthophylls, which suggests a biosynthetic blockage at early steps of the carotenoid pathway. Results: To identify the molecular basis of 'Pinalate' yellow fruit, a complete characterization of carotenoids profile together with transcriptional changes in carotenoid biosynthetic genes were performed in mutant and parental fruits during development and ripening. 'Pinalate' fruit showed a distinctive carotenoid profile at all ripening stages, accumulating phytoene, phytofluene and unusual proportions of 9,15,9′-tri-cis- and 9,9′-di-cis-ζ-carotene, while content of downstream carotenoids was significantly decreased. Transcript levels for most of the carotenoid biosynthetic genes showed no alterations in 'Pinalate'; however, the steady-state level mRNA of ζ-carotene isomerase (Z-ISO), which catalyses the conversion of 9,15,9′-tri-cis- to 9,9′-di-cis-ζ-carotene, was significantly reduced both in 'Pinalate' fruit and leaf tissues. Isolation of the 'Pinalate' Z-ISO genomic sequence identified a new allele with a single nucleotide insertion at the second exon, which generates an alternative splicing site that alters Z-ISO transcripts encoding non-functional enzyme. Moreover, functional assays of citrus Z-ISO in E.coli showed that light is able to enhance a non-enzymatic isomerization of tri-cis to di-cis-ζ-carotene, which is in agreement with the partial rescue of mutant phenotype when 'Pinalate' fruits are highly exposed to light during ripening. Conclusion: A single nucleotide insertion has been identified in 'Pinalate' Z-ISO gene that results in truncated proteins. This causes a bottleneck in the carotenoid pathway with an unbalanced content of carotenes upstream to β,β-xanthophylls in fruit tissues. In chloroplastic tissues, the effects of Z-ISO alteration are mainly manifested as a reduction in total carotenoid content. Taken together, our results indicate that the spontaneous single nucleotide insertion in Z-ISO is the molecular basis of the yellow pigmentation in 'Pinalate' sweet orange and points this isomerase as an essential activity for carotenogenesis in citrus fruits. © 2019 The Author(s).https://hdl.handle.net/20.500.12381/1252enenginfo:eu-repo/semantics/openAccessAcceso abiertoCarotenoidZeta-carotene isomeraseGENE EXPRESSIONMUTANTPigmentationRIPENINGPLATAFORMA AGROALIMENTOSCAROTENOIDESCITRUSA mutant allele of ζ-carotene isomerase (Z-ISO) is associated with the yellow pigmentation of the "pinalate" sweet orange mutant and reveals new insights into its role in fruit carotenogenesis.ArticlePublishedVersioninfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:AINFOinstname:Instituto Nacional de Investigación Agropecuariainstacron:Instituto Nacional de Investigación AgropecuariaRODRIGO, M.J.LADO, J.ALÓS, E.ALQUÉZAR, B.DERY, O.HIRSCHBERG, J.ZACARÍAS, L.SWORDsword-2022-10-20T22:32:57.original.xmlOriginal SWORD entry documentapplication/octet-stream4223https://redi.anii.org.uy/jspui/bitstream/20.500.12381/1252/1/sword-2022-10-20T22%3a32%3a57.original.xml56e0f740b1b6a6509d5f9a25720e066dMD5120.500.12381/12522022-10-20 22:32:57.857oai:redi.anii.org.uy:20.500.12381/1252Gobiernohttp://inia.uyhttps://redi.anii.org.uy/oai/requestlorrego@inia.org.uyUruguayopendoar:2022-10-21T01:32:57AINFO - Instituto Nacional de Investigación Agropecuariafalse |
spellingShingle | A mutant allele of ζ-carotene isomerase (Z-ISO) is associated with the yellow pigmentation of the "pinalate" sweet orange mutant and reveals new insights into its role in fruit carotenogenesis. RODRIGO, M.J. Carotenoid Zeta-carotene isomerase GENE EXPRESSION MUTANT Pigmentation RIPENING PLATAFORMA AGROALIMENTOS CAROTENOIDES CITRUS |
status_str | publishedVersion |
title | A mutant allele of ζ-carotene isomerase (Z-ISO) is associated with the yellow pigmentation of the "pinalate" sweet orange mutant and reveals new insights into its role in fruit carotenogenesis. |
title_full | A mutant allele of ζ-carotene isomerase (Z-ISO) is associated with the yellow pigmentation of the "pinalate" sweet orange mutant and reveals new insights into its role in fruit carotenogenesis. |
title_fullStr | A mutant allele of ζ-carotene isomerase (Z-ISO) is associated with the yellow pigmentation of the "pinalate" sweet orange mutant and reveals new insights into its role in fruit carotenogenesis. |
title_full_unstemmed | A mutant allele of ζ-carotene isomerase (Z-ISO) is associated with the yellow pigmentation of the "pinalate" sweet orange mutant and reveals new insights into its role in fruit carotenogenesis. |
title_short | A mutant allele of ζ-carotene isomerase (Z-ISO) is associated with the yellow pigmentation of the "pinalate" sweet orange mutant and reveals new insights into its role in fruit carotenogenesis. |
title_sort | A mutant allele of ζ-carotene isomerase (Z-ISO) is associated with the yellow pigmentation of the "pinalate" sweet orange mutant and reveals new insights into its role in fruit carotenogenesis. |
topic | Carotenoid Zeta-carotene isomerase GENE EXPRESSION MUTANT Pigmentation RIPENING PLATAFORMA AGROALIMENTOS CAROTENOIDES CITRUS |
url | http://www.ainfo.inia.uy/consulta/busca?b=pc&id=60661&biblioteca=vazio&busca=60661&qFacets=60661 |