The sensory effects of light on the electric organ discharge rate of Gymnotus omarorum
Resumen:
Gymnotiformes are nocturnal fishes inhabiting the root mats of floating plants. They use their electric organ discharge (EOD) to explore the environment and to communicate. Here, we show and describe tonic and phasic sensory-electromotor responses to light distinct from indirect effects depending on the light-induced endogenous circadian rhythm. In the dark, principally during the night, inter-EOD interval histograms are bimodal: the main peak corresponds to the basal rate and a secondary peak corresponds to high-frequency bouts. Light causes a twofold tonic but opposing effect on the EOD histogram: (i) decreasing the main mode and (ii) blocking the high-frequency bouts and consequently increasing the main peak at the expense of removal of the secondary one. Additionally, light evokes phasic responses whose amplitude increases with intensity but whose slow time course and poor adaptation differentiate from the so-called novelty responses evoked by abrupt changes in sensory stimuli of other modalities. We confirmed that Gymnotus omarorum tends to escape from light, suggesting that these phasic responses are probably part of a global ‘light-avoidance response’. We interpret the data within an ecological context. Fish rest under the shade of aquatic plants during the day andlight spotsduetothesun’srelativemovementalertthefishtohide in shadyzonestoavoidmacropticpredators andfacilitate tracking the movement of floating plant islands by wind and/or water currents.
2023 | |
Agencia Nacional de Investigación e Innovación | |
Circadian cycle High-frequency bouts Tenebrotaxis Ciencias Médicas y de la Salud Medicina Básica Neurociencias |
|
Inglés | |
Instituto de Investigaciones Biológicas Clemente Estable | |
IIBCE en REDI | |
https://hdl.handle.net/20.500.12381/3533 | |
Acceso abierto | |
Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. (CC BY-NC-ND) |
Sumario: | Gymnotiformes are nocturnal fishes inhabiting the root mats of floating plants. They use their electric organ discharge (EOD) to explore the environment and to communicate. Here, we show and describe tonic and phasic sensory-electromotor responses to light distinct from indirect effects depending on the light-induced endogenous circadian rhythm. In the dark, principally during the night, inter-EOD interval histograms are bimodal: the main peak corresponds to the basal rate and a secondary peak corresponds to high-frequency bouts. Light causes a twofold tonic but opposing effect on the EOD histogram: (i) decreasing the main mode and (ii) blocking the high-frequency bouts and consequently increasing the main peak at the expense of removal of the secondary one. Additionally, light evokes phasic responses whose amplitude increases with intensity but whose slow time course and poor adaptation differentiate from the so-called novelty responses evoked by abrupt changes in sensory stimuli of other modalities. We confirmed that Gymnotus omarorum tends to escape from light, suggesting that these phasic responses are probably part of a global ‘light-avoidance response’. We interpret the data within an ecological context. Fish rest under the shade of aquatic plants during the day andlight spotsduetothesun’srelativemovementalertthefishtohide in shadyzonestoavoidmacropticpredators andfacilitate tracking the movement of floating plant islands by wind and/or water currents. |
---|