Redes neuronales artificiales para la predicción de flujos de carga aplicadas al sistema de trasmisión de Uruguay
Resumen:
En el presente trabajo se propone el uso de redes neuronales artificiales para la resolución del problema de flujos de carga. El estudio del flujo de carga de la red eléctrica constituye una herramienta fundamental para la operación y la planificación de un sistema eléctrico. En términos matemáticos el problema de flujos de carga se resuelve a través de un sistema de ecuaciones no lineales. Para dicha resolución tradicionalmente se han utilizado diversos métodos numéricos, principalmente el método de Newton-Raphson y sus variantes. Estos métodos numéricos aplicados a sistemas eléctricos de gran tamaño tienen un alto costo computacional asociado. Resolver una cantidad considerable de flujos de carga utilizando estos métodos implica incurrir en tiempos de ejecución que resultan prohibitivos en estudios sobre la red eléctrica. Este problema se vuelve crítico en estudios de casos de contingencia, incluso utilizando el criterio simple de contingencia N-1. La construcción de redes neuronales que aproximen la resolución de flujos de carga permite reducir significativamente los tiempos de ejecución de los estudios anteriormente mencionados. En este trabajo se propone el diseño de una arquitectura de red neuronal para la aproximación de flujos de carga. Utilizando la arquitectura diseñada se implementa un modelo de aproximación de flujos de carga. La validación de la herramienta se realiza utilizando la red de trasmisión de Uruguay. La aproximación obtenida para este caso de estudio es evaluada aplicando la métrica MAPE y se obtiene un valor de 2.6%, lo que constituye un resultado muy prometedor.
In the present work, the use of artificial neural networks is proposed to solve the load flow problem. The study of the load flow of the electrical network constitutes a fundamental tool for the operation and planning of an electrical system. The load flow problem is solved by a system of non-linear equations. For this resolution, numerical methods have traditionally been used, mainly the Newton-Raphson method and its variants. These numerical methods applied to large electrical systems are very expensive in terms of computational cost. Solving a considerable number of load flows using these methods involves incurring in execution times that are prohibitive in studies of the electrical network. This problem becomes critical in contingency case studies, even using the simple N-1 contingency criterion. The construction of neural networks that approximate the resolution of load flows allows to significantly reducing the execution time of the aforementioned studies. In this work, the design of a neural network architecture for the approximation of load flows is proposed. Using the designed architecture, a load flow approximation model is implemented. The validation of the tool is carried out using the Uruguayan transmission network. The approximation obtained for this case study is evaluated by applying the MAPE metric and a value of 2.6% is obtained, which constitutes a very promising result.
2021 | |
ANII_FSE_1_2018_1_153061 | |
Flujos de carga Redes neuronales Power flow Neural networks |
|
Español | |
Universidad de la República | |
COLIBRI | |
https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/6040
https://hdl.handle.net/20.500.12008/33981 https://doi.org/10.18845/tm.v34i7.6040 |
|
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807522899440959488 |
---|---|
author | Garabedián, Santiago |
author2 | Porteiro, Rodrigo Pena, Pablo |
author2_role | author author |
author_facet | Garabedián, Santiago Porteiro, Rodrigo Pena, Pablo |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a006180e3f5b2ad0b88185d14284c0e0 36c32e9c6da50e6d55578c16944ef7f6 1996b8461bc290aef6a27d78c67b6b52 5a9d63a6fc502ded334c3cdc8e1eb46f |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/33981/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/33981/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/33981/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/33981/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/33981/1/GPP21.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Garabedián Santiago, Universidad de la República (Uruguay). Facultad de Ingeniería. Porteiro Rodrigo, Universidad de la República (Uruguay). Facultad de Ingeniería. Pena Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería. |
dc.coverage.spatial.es.fl_str_mv | Uruguay |
dc.creator.none.fl_str_mv | Garabedián, Santiago Porteiro, Rodrigo Pena, Pablo |
dc.date.accessioned.none.fl_str_mv | 2022-09-27T12:36:50Z |
dc.date.available.none.fl_str_mv | 2022-09-27T12:36:50Z |
dc.date.issued.none.fl_str_mv | 2021 |
dc.description.abstract.none.fl_txt_mv | En el presente trabajo se propone el uso de redes neuronales artificiales para la resolución del problema de flujos de carga. El estudio del flujo de carga de la red eléctrica constituye una herramienta fundamental para la operación y la planificación de un sistema eléctrico. En términos matemáticos el problema de flujos de carga se resuelve a través de un sistema de ecuaciones no lineales. Para dicha resolución tradicionalmente se han utilizado diversos métodos numéricos, principalmente el método de Newton-Raphson y sus variantes. Estos métodos numéricos aplicados a sistemas eléctricos de gran tamaño tienen un alto costo computacional asociado. Resolver una cantidad considerable de flujos de carga utilizando estos métodos implica incurrir en tiempos de ejecución que resultan prohibitivos en estudios sobre la red eléctrica. Este problema se vuelve crítico en estudios de casos de contingencia, incluso utilizando el criterio simple de contingencia N-1. La construcción de redes neuronales que aproximen la resolución de flujos de carga permite reducir significativamente los tiempos de ejecución de los estudios anteriormente mencionados. En este trabajo se propone el diseño de una arquitectura de red neuronal para la aproximación de flujos de carga. Utilizando la arquitectura diseñada se implementa un modelo de aproximación de flujos de carga. La validación de la herramienta se realiza utilizando la red de trasmisión de Uruguay. La aproximación obtenida para este caso de estudio es evaluada aplicando la métrica MAPE y se obtiene un valor de 2.6%, lo que constituye un resultado muy prometedor. In the present work, the use of artificial neural networks is proposed to solve the load flow problem. The study of the load flow of the electrical network constitutes a fundamental tool for the operation and planning of an electrical system. The load flow problem is solved by a system of non-linear equations. For this resolution, numerical methods have traditionally been used, mainly the Newton-Raphson method and its variants. These numerical methods applied to large electrical systems are very expensive in terms of computational cost. Solving a considerable number of load flows using these methods involves incurring in execution times that are prohibitive in studies of the electrical network. This problem becomes critical in contingency case studies, even using the simple N-1 contingency criterion. The construction of neural networks that approximate the resolution of load flows allows to significantly reducing the execution time of the aforementioned studies. In this work, the design of a neural network architecture for the approximation of load flows is proposed. Using the designed architecture, a load flow approximation model is implemented. The validation of the tool is carried out using the Uruguayan transmission network. The approximation obtained for this case study is evaluated by applying the MAPE metric and a value of 2.6% is obtained, which constitutes a very promising result. |
dc.description.es.fl_txt_mv | Vol. especial. Diciembre 2021 Congreso de Alta Tensión y Aislamiento Electrónico |
dc.description.sponsorship.none.fl_txt_mv | ANII_FSE_1_2018_1_153061 |
dc.format.extent.es.fl_str_mv | 11 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Garabedián, S., Porteiro, R. y Pena, P. "Redes neuronales artificiales para la predicción de flujos de carga aplicadas al sistema de trasmisión de Uruguay". Revista Tecnología en Marcha. [en línea]. 2021, vol.34, no 7, pp. 182-192. DOI: 10.18845/tm.v34i7.6040 |
dc.identifier.doi.none.fl_str_mv | https://doi.org/10.18845/tm.v34i7.6040 |
dc.identifier.eissn.none.fl_str_mv | 2215-3241 |
dc.identifier.uri.none.fl_str_mv | https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/6040 https://hdl.handle.net/20.500.12008/33981 |
dc.language.iso.none.fl_str_mv | es spa |
dc.publisher.es.fl_str_mv | IEEE |
dc.relation.ispartof.es.fl_str_mv | Revista Tecnología en Marcha, vol.34, no 7, dec. 2021, pp. 182-192. |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Flujos de carga Redes neuronales Power flow Neural networks |
dc.title.none.fl_str_mv | Redes neuronales artificiales para la predicción de flujos de carga aplicadas al sistema de trasmisión de Uruguay |
dc.type.es.fl_str_mv | Artículo |
dc.type.none.fl_str_mv | info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | Vol. especial. Diciembre 2021 Congreso de Alta Tensión y Aislamiento Electrónico |
eu_rights_str_mv | openAccess |
format | article |
id | COLIBRI_ff84a34778d3f1803d196c7953c04c28 |
identifier_str_mv | Garabedián, S., Porteiro, R. y Pena, P. "Redes neuronales artificiales para la predicción de flujos de carga aplicadas al sistema de trasmisión de Uruguay". Revista Tecnología en Marcha. [en línea]. 2021, vol.34, no 7, pp. 182-192. DOI: 10.18845/tm.v34i7.6040 2215-3241 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | spa |
language_invalid_str_mv | es |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/33981 |
publishDate | 2021 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | Garabedián Santiago, Universidad de la República (Uruguay). Facultad de Ingeniería.Porteiro Rodrigo, Universidad de la República (Uruguay). Facultad de Ingeniería.Pena Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería.Uruguay2022-09-27T12:36:50Z2022-09-27T12:36:50Z2021Garabedián, S., Porteiro, R. y Pena, P. "Redes neuronales artificiales para la predicción de flujos de carga aplicadas al sistema de trasmisión de Uruguay". Revista Tecnología en Marcha. [en línea]. 2021, vol.34, no 7, pp. 182-192. DOI: 10.18845/tm.v34i7.6040https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/6040https://hdl.handle.net/20.500.12008/33981https://doi.org/10.18845/tm.v34i7.60402215-3241Vol. especial. Diciembre 2021 Congreso de Alta Tensión y Aislamiento ElectrónicoEn el presente trabajo se propone el uso de redes neuronales artificiales para la resolución del problema de flujos de carga. El estudio del flujo de carga de la red eléctrica constituye una herramienta fundamental para la operación y la planificación de un sistema eléctrico. En términos matemáticos el problema de flujos de carga se resuelve a través de un sistema de ecuaciones no lineales. Para dicha resolución tradicionalmente se han utilizado diversos métodos numéricos, principalmente el método de Newton-Raphson y sus variantes. Estos métodos numéricos aplicados a sistemas eléctricos de gran tamaño tienen un alto costo computacional asociado. Resolver una cantidad considerable de flujos de carga utilizando estos métodos implica incurrir en tiempos de ejecución que resultan prohibitivos en estudios sobre la red eléctrica. Este problema se vuelve crítico en estudios de casos de contingencia, incluso utilizando el criterio simple de contingencia N-1. La construcción de redes neuronales que aproximen la resolución de flujos de carga permite reducir significativamente los tiempos de ejecución de los estudios anteriormente mencionados. En este trabajo se propone el diseño de una arquitectura de red neuronal para la aproximación de flujos de carga. Utilizando la arquitectura diseñada se implementa un modelo de aproximación de flujos de carga. La validación de la herramienta se realiza utilizando la red de trasmisión de Uruguay. La aproximación obtenida para este caso de estudio es evaluada aplicando la métrica MAPE y se obtiene un valor de 2.6%, lo que constituye un resultado muy prometedor.In the present work, the use of artificial neural networks is proposed to solve the load flow problem. The study of the load flow of the electrical network constitutes a fundamental tool for the operation and planning of an electrical system. The load flow problem is solved by a system of non-linear equations. For this resolution, numerical methods have traditionally been used, mainly the Newton-Raphson method and its variants. These numerical methods applied to large electrical systems are very expensive in terms of computational cost. Solving a considerable number of load flows using these methods involves incurring in execution times that are prohibitive in studies of the electrical network. This problem becomes critical in contingency case studies, even using the simple N-1 contingency criterion. The construction of neural networks that approximate the resolution of load flows allows to significantly reducing the execution time of the aforementioned studies. In this work, the design of a neural network architecture for the approximation of load flows is proposed. Using the designed architecture, a load flow approximation model is implemented. The validation of the tool is carried out using the Uruguayan transmission network. The approximation obtained for this case study is evaluated by applying the MAPE metric and a value of 2.6% is obtained, which constitutes a very promising result.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2022-09-26T18:36:34Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) GPP21.pdf: 694011 bytes, checksum: 5a9d63a6fc502ded334c3cdc8e1eb46f (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2022-09-26T19:00:15Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) GPP21.pdf: 694011 bytes, checksum: 5a9d63a6fc502ded334c3cdc8e1eb46f (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2022-09-27T12:36:50Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) GPP21.pdf: 694011 bytes, checksum: 5a9d63a6fc502ded334c3cdc8e1eb46f (MD5) Previous issue date: 2021ANII_FSE_1_2018_1_15306111 p.application/pdfesspaIEEERevista Tecnología en Marcha, vol.34, no 7, dec. 2021, pp. 182-192.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Flujos de cargaRedes neuronalesPower flowNeural networksRedes neuronales artificiales para la predicción de flujos de carga aplicadas al sistema de trasmisión de UruguayArtículoinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaGarabedián, SantiagoPorteiro, RodrigoPena, PabloPotenciaModelado y Simulación de SEPLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/33981/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/33981/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/33981/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/33981/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALGPP21.pdfGPP21.pdfapplication/pdf694011http://localhost:8080/xmlui/bitstream/20.500.12008/33981/1/GPP21.pdf5a9d63a6fc502ded334c3cdc8e1eb46fMD5120.500.12008/339812024-07-24 17:25:46.534oai:colibri.udelar.edu.uy:20.500.12008/33981VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:17.989705COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Redes neuronales artificiales para la predicción de flujos de carga aplicadas al sistema de trasmisión de Uruguay Garabedián, Santiago Flujos de carga Redes neuronales Power flow Neural networks |
status_str | publishedVersion |
title | Redes neuronales artificiales para la predicción de flujos de carga aplicadas al sistema de trasmisión de Uruguay |
title_full | Redes neuronales artificiales para la predicción de flujos de carga aplicadas al sistema de trasmisión de Uruguay |
title_fullStr | Redes neuronales artificiales para la predicción de flujos de carga aplicadas al sistema de trasmisión de Uruguay |
title_full_unstemmed | Redes neuronales artificiales para la predicción de flujos de carga aplicadas al sistema de trasmisión de Uruguay |
title_short | Redes neuronales artificiales para la predicción de flujos de carga aplicadas al sistema de trasmisión de Uruguay |
title_sort | Redes neuronales artificiales para la predicción de flujos de carga aplicadas al sistema de trasmisión de Uruguay |
topic | Flujos de carga Redes neuronales Power flow Neural networks |
url | https://revistas.tec.ac.cr/index.php/tec_marcha/article/view/6040 https://hdl.handle.net/20.500.12008/33981 https://doi.org/10.18845/tm.v34i7.6040 |