Diameter-constrained reliability : theory and applications

Canale, Eduardo - Robledo Amoza, Franco Rafael - Cancela, Héctor - Romero, Pablo - Sartor, Pablo

Resumen:

A classical requirement in the design of communication networks is that all entities must be connected. In a network where links may fail, the connectedness probability is called all-terminal reliability. The model is suitable for FTTH services, where link failures are unpredictable. In real scenarios, terminals must be connected by a limited number of hops. Therefore, we study the Diameter- Constrained Reliability (DCR). We are given a simple graph G = (V,E), a subset K V of terminals, a diameter d and independent failure probabilities q = 1 − p for each link. The goal is to find the probability Rd K,G that all terminals remain connected by paths composed by d hops or less. The general DCR computation is NP-Hard, and the target probability is a polynomial in p. In this chapter we study the DCR metric. It connects reliability with quality, and should be considered in the design of the physical layer in FTTH services together with connectivity requirements. We include a full discussion of the computational complexity of the DCR as a function of the number of terminals k = |K| and diameter d. Then, we find efficient DCR computation for Monma graphs, an outstanding family of topologies from robust network design. The computation suggests corollaries that enrich the subset of instances that accept efficient DCR computation. Given its NP-Hardness, several Monte Carlo-based algorithms algorithms are designed in order to find the DCR in general, inspired in two approaches: counting and interpolation. The results suggest that counting techniques outperform interpolation, and show scalability properties as well. Open problems and trends for future work are included in the conclusions.


Detalles Bibliográficos
2016
Network reliability
Diameter-constrained reliability
Monte-Carlo methods
Monma graphs
Inglés
Universidad de la República
COLIBRI
http://hdl.handle.net/20.500.12008/9203
Acceso abierto
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
_version_ 1807522945468203008
author Canale, Eduardo
author2 Robledo Amoza, Franco Rafael
Cancela, Héctor
Romero, Pablo
Sartor, Pablo
author2_role author
author
author
author
author_facet Canale, Eduardo
Robledo Amoza, Franco Rafael
Cancela, Héctor
Romero, Pablo
Sartor, Pablo
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
2618f1c42026cca580d84e3914f4cffa
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/9203/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/9203/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/9203/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/9203/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/9203/1/TR1606.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Canale Eduardo, Universidad de la República (Uruguay). Facultad de Ingeniería.
Robledo Amoza Franco, Universidad de la República (Uruguay). Facultad de Ingeniería.
Cancela Héctor, Universidad de la República (Uruguay). Facultad de Ingeniería.
Romero Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería.
Sartor Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creator.none.fl_str_mv Canale, Eduardo
Robledo Amoza, Franco Rafael
Cancela, Héctor
Romero, Pablo
Sartor, Pablo
dc.date.accessioned.none.fl_str_mv 2017-07-19T23:05:59Z
dc.date.available.none.fl_str_mv 2017-07-19T23:05:59Z
dc.date.issued.none.fl_str_mv 2016
dc.description.abstract.none.fl_txt_mv A classical requirement in the design of communication networks is that all entities must be connected. In a network where links may fail, the connectedness probability is called all-terminal reliability. The model is suitable for FTTH services, where link failures are unpredictable. In real scenarios, terminals must be connected by a limited number of hops. Therefore, we study the Diameter- Constrained Reliability (DCR). We are given a simple graph G = (V,E), a subset K V of terminals, a diameter d and independent failure probabilities q = 1 − p for each link. The goal is to find the probability Rd K,G that all terminals remain connected by paths composed by d hops or less. The general DCR computation is NP-Hard, and the target probability is a polynomial in p. In this chapter we study the DCR metric. It connects reliability with quality, and should be considered in the design of the physical layer in FTTH services together with connectivity requirements. We include a full discussion of the computational complexity of the DCR as a function of the number of terminals k = |K| and diameter d. Then, we find efficient DCR computation for Monma graphs, an outstanding family of topologies from robust network design. The computation suggests corollaries that enrich the subset of instances that accept efficient DCR computation. Given its NP-Hardness, several Monte Carlo-based algorithms algorithms are designed in order to find the DCR in general, inspired in two approaches: counting and interpolation. The results suggest that counting techniques outperform interpolation, and show scalability properties as well. Open problems and trends for future work are included in the conclusions.
dc.format.extent.es.fl_str_mv 4 p.
dc.format.mimetype.es.fl_str_mv aplication/pdf
dc.identifier.citation.es.fl_str_mv CANALE, Eduardo, ROBLEDO, Franco, CANCELA, Héctor, y otros. Diameter-constrained reliability : theory and applications [en línea]. Montevideo : UR.FI-INCO, 2016
dc.identifier.issn.none.fl_str_mv 0797-6410
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12008/9203
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv UR.FI-INCO
dc.relation.ispartof.none.fl_str_mv Reportes Técnicos;
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Network reliability
Diameter-constrained reliability
Monte-Carlo methods
Monma graphs
dc.title.none.fl_str_mv Diameter-constrained reliability : theory and applications
dc.type.es.fl_str_mv Reporte técnico
dc.type.none.fl_str_mv info:eu-repo/semantics/report
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description A classical requirement in the design of communication networks is that all entities must be connected. In a network where links may fail, the connectedness probability is called all-terminal reliability. The model is suitable for FTTH services, where link failures are unpredictable. In real scenarios, terminals must be connected by a limited number of hops. Therefore, we study the Diameter- Constrained Reliability (DCR). We are given a simple graph G = (V,E), a subset K V of terminals, a diameter d and independent failure probabilities q = 1 − p for each link. The goal is to find the probability Rd K,G that all terminals remain connected by paths composed by d hops or less. The general DCR computation is NP-Hard, and the target probability is a polynomial in p. In this chapter we study the DCR metric. It connects reliability with quality, and should be considered in the design of the physical layer in FTTH services together with connectivity requirements. We include a full discussion of the computational complexity of the DCR as a function of the number of terminals k = |K| and diameter d. Then, we find efficient DCR computation for Monma graphs, an outstanding family of topologies from robust network design. The computation suggests corollaries that enrich the subset of instances that accept efficient DCR computation. Given its NP-Hardness, several Monte Carlo-based algorithms algorithms are designed in order to find the DCR in general, inspired in two approaches: counting and interpolation. The results suggest that counting techniques outperform interpolation, and show scalability properties as well. Open problems and trends for future work are included in the conclusions.
eu_rights_str_mv openAccess
format report
id COLIBRI_ff543ebfec2cf4c965dfdb516eae7f10
identifier_str_mv CANALE, Eduardo, ROBLEDO, Franco, CANCELA, Héctor, y otros. Diameter-constrained reliability : theory and applications [en línea]. Montevideo : UR.FI-INCO, 2016
0797-6410
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/9203
publishDate 2016
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
spelling Canale Eduardo, Universidad de la República (Uruguay). Facultad de Ingeniería.Robledo Amoza Franco, Universidad de la República (Uruguay). Facultad de Ingeniería.Cancela Héctor, Universidad de la República (Uruguay). Facultad de Ingeniería.Romero Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería.Sartor Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería.2017-07-19T23:05:59Z2017-07-19T23:05:59Z2016CANALE, Eduardo, ROBLEDO, Franco, CANCELA, Héctor, y otros. Diameter-constrained reliability : theory and applications [en línea]. Montevideo : UR.FI-INCO, 20160797-6410http://hdl.handle.net/20.500.12008/9203A classical requirement in the design of communication networks is that all entities must be connected. In a network where links may fail, the connectedness probability is called all-terminal reliability. The model is suitable for FTTH services, where link failures are unpredictable. In real scenarios, terminals must be connected by a limited number of hops. Therefore, we study the Diameter- Constrained Reliability (DCR). We are given a simple graph G = (V,E), a subset K V of terminals, a diameter d and independent failure probabilities q = 1 − p for each link. The goal is to find the probability Rd K,G that all terminals remain connected by paths composed by d hops or less. The general DCR computation is NP-Hard, and the target probability is a polynomial in p. In this chapter we study the DCR metric. It connects reliability with quality, and should be considered in the design of the physical layer in FTTH services together with connectivity requirements. We include a full discussion of the computational complexity of the DCR as a function of the number of terminals k = |K| and diameter d. Then, we find efficient DCR computation for Monma graphs, an outstanding family of topologies from robust network design. The computation suggests corollaries that enrich the subset of instances that accept efficient DCR computation. Given its NP-Hardness, several Monte Carlo-based algorithms algorithms are designed in order to find the DCR in general, inspired in two approaches: counting and interpolation. The results suggest that counting techniques outperform interpolation, and show scalability properties as well. Open problems and trends for future work are included in the conclusions.Submitted by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2017-07-19T23:05:59Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) TR1606.pdf: 111744 bytes, checksum: 2618f1c42026cca580d84e3914f4cffa (MD5)Made available in DSpace on 2017-07-19T23:05:59Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) TR1606.pdf: 111744 bytes, checksum: 2618f1c42026cca580d84e3914f4cffa (MD5) Previous issue date: 20164 p.aplication/pdfenengUR.FI-INCOReportes Técnicos;Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)Network reliabilityDiameter-constrained reliabilityMonte-Carlo methodsMonma graphsDiameter-constrained reliability : theory and applicationsReporte técnicoinfo:eu-repo/semantics/reportinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaCanale, EduardoRobledo Amoza, Franco RafaelCancela, HéctorRomero, PabloSartor, PabloLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/9203/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://localhost:8080/xmlui/bitstream/20.500.12008/9203/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://localhost:8080/xmlui/bitstream/20.500.12008/9203/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://localhost:8080/xmlui/bitstream/20.500.12008/9203/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALTR1606.pdfTR1606.pdfapplication/pdf111744http://localhost:8080/xmlui/bitstream/20.500.12008/9203/1/TR1606.pdf2618f1c42026cca580d84e3914f4cffaMD5120.500.12008/92032019-06-17 19:11:15.092oai:colibri.udelar.edu.uy:20.500.12008/9203VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:34:02.619128COLIBRI - Universidad de la Repúblicafalse
spellingShingle Diameter-constrained reliability : theory and applications
Canale, Eduardo
Network reliability
Diameter-constrained reliability
Monte-Carlo methods
Monma graphs
status_str publishedVersion
title Diameter-constrained reliability : theory and applications
title_full Diameter-constrained reliability : theory and applications
title_fullStr Diameter-constrained reliability : theory and applications
title_full_unstemmed Diameter-constrained reliability : theory and applications
title_short Diameter-constrained reliability : theory and applications
title_sort Diameter-constrained reliability : theory and applications
topic Network reliability
Diameter-constrained reliability
Monte-Carlo methods
Monma graphs
url http://hdl.handle.net/20.500.12008/9203