Accelerating advanced preconditioning methods on hybrid architectures

Dufrechou, Ernesto

Supervisor(es): Ezzatti, Pablo - Quintana-Ortí, Enrique

Resumen:

Un gran número de problemas, en diversas áreas de la ciencia y la ingeniería, involucran la solución de sistemas dispersos de ecuaciones lineales de gran escala. En muchos de estos escenarios, son además un cuello de botella desde el punto de vista computacional, y por esa razón, su implementación eficiente ha motivado una cantidad enorme de trabajos científicos. Por muchos años, los métodos directos basados en el proceso de la Eliminación Gaussiana han sido la herramienta de referencia para resolver dichos sistemas, pero la dimensión de los problemas abordados actualmente impone serios desafíos a la mayoría de estos algoritmos, considerando sus requerimientos de memoria, su tiempo de cómputo y la complejidad de su implementación. Propulsados por los avances en las técnicas de precondicionado, los métodos iterativos se han vuelto más confiables, y por lo tanto emergen como alternativas a los métodos directos, ofreciendo soluciones de alta calidad a un menor costo computacional. Sin embargo, estos avances muchas veces son relativos a un problema específico, o dotan a los precondicionadores de una complejidad tal, que su aplicación en diversos problemas se vuelve poco práctica en términos de tiempo de ejecución y consumo de memoria. Como respuesta a esta situación, es común la utilización de estrategias de Computación de Alto Desempeño, ya que el desarrollo sostenido de las plataformas de hardware permite la ejecución simultánea de cada vez más operaciones. Un claro ejemplo de esta evolución son las plataformas compuestas por procesadores multi-núcleo y aceleradoras de hardware como las Unidades de Procesamiento Gráfico (GPU). Particularmente, las GPU se han convertido en poderosos procesadores paralelos, capaces de integrar miles de núcleos a precios y consumo energético razonables.Por estas razones, las GPU son ahora una plataforma de hardware de gran importancia para la ciencia y la ingeniería, y su uso eficiente es crucial para alcanzar un buen desempeño en la mayoría de las aplicaciones. Esta tesis se centra en el uso de GPUs para acelerar la solución de sistemas dispersos de ecuaciones lineales usando métodos iterativos precondicionados con técnicas modernas. En particular, se trabaja sobre ILUPACK, que ofrece implementaciones de los métodos iterativos más importantes, y presenta un interesante y moderno precondicionador de tipo ILU multinivel. En este trabajo, se desarrollan versiones del precondicionador y de los métodos incluidos en el paquete, capaces de explotar el paralelismo de datos mediante el uso de GPUs sin afectar las propiedades numéricas del precondicionador. Además, se habilita y analiza el uso de las GPU en versiones paralelas existentes, basadas en paralelismo de tareas para plataformas de memoria compartida y distribuida. Los resultados obtenidos muestran una sensible mejora en el tiempo de ejecución de los métodos abordados, así como la posibilidad de resolver problemas de gran escala de forma eficiente.


Detalles Bibliográficos
2019
Sistemas lineales dispersos
Precondicionadores
Unidades de Procesamiento Gráfico (GPU)
Paralelismo de datos
ILUPACK.
Español
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/22325
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523182014365696
author Dufrechou, Ernesto
author_facet Dufrechou, Ernesto
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
b45ec3165ecd1147572d096594b1ae07
9da0b6dfac957114c6a7714714b86306
3af471bec6304be42a5784aa5e09ca97
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/22325/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/22325/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/22325/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/22325/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/22325/1/ED19.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Dufrechou Ernesto, Universidad de la República (Uruguay). Facultad de Ingeniería
dc.creator.advisor.none.fl_str_mv Ezzatti, Pablo
Quintana-Ortí, Enrique
dc.creator.none.fl_str_mv Dufrechou, Ernesto
dc.date.accessioned.none.fl_str_mv 2019-11-12T17:06:15Z
dc.date.available.none.fl_str_mv 2019-11-12T17:06:15Z
dc.date.issued.none.fl_str_mv 2019
dc.description.abstract.none.fl_txt_mv Un gran número de problemas, en diversas áreas de la ciencia y la ingeniería, involucran la solución de sistemas dispersos de ecuaciones lineales de gran escala. En muchos de estos escenarios, son además un cuello de botella desde el punto de vista computacional, y por esa razón, su implementación eficiente ha motivado una cantidad enorme de trabajos científicos. Por muchos años, los métodos directos basados en el proceso de la Eliminación Gaussiana han sido la herramienta de referencia para resolver dichos sistemas, pero la dimensión de los problemas abordados actualmente impone serios desafíos a la mayoría de estos algoritmos, considerando sus requerimientos de memoria, su tiempo de cómputo y la complejidad de su implementación. Propulsados por los avances en las técnicas de precondicionado, los métodos iterativos se han vuelto más confiables, y por lo tanto emergen como alternativas a los métodos directos, ofreciendo soluciones de alta calidad a un menor costo computacional. Sin embargo, estos avances muchas veces son relativos a un problema específico, o dotan a los precondicionadores de una complejidad tal, que su aplicación en diversos problemas se vuelve poco práctica en términos de tiempo de ejecución y consumo de memoria. Como respuesta a esta situación, es común la utilización de estrategias de Computación de Alto Desempeño, ya que el desarrollo sostenido de las plataformas de hardware permite la ejecución simultánea de cada vez más operaciones. Un claro ejemplo de esta evolución son las plataformas compuestas por procesadores multi-núcleo y aceleradoras de hardware como las Unidades de Procesamiento Gráfico (GPU). Particularmente, las GPU se han convertido en poderosos procesadores paralelos, capaces de integrar miles de núcleos a precios y consumo energético razonables.Por estas razones, las GPU son ahora una plataforma de hardware de gran importancia para la ciencia y la ingeniería, y su uso eficiente es crucial para alcanzar un buen desempeño en la mayoría de las aplicaciones. Esta tesis se centra en el uso de GPUs para acelerar la solución de sistemas dispersos de ecuaciones lineales usando métodos iterativos precondicionados con técnicas modernas. En particular, se trabaja sobre ILUPACK, que ofrece implementaciones de los métodos iterativos más importantes, y presenta un interesante y moderno precondicionador de tipo ILU multinivel. En este trabajo, se desarrollan versiones del precondicionador y de los métodos incluidos en el paquete, capaces de explotar el paralelismo de datos mediante el uso de GPUs sin afectar las propiedades numéricas del precondicionador. Además, se habilita y analiza el uso de las GPU en versiones paralelas existentes, basadas en paralelismo de tareas para plataformas de memoria compartida y distribuida. Los resultados obtenidos muestran una sensible mejora en el tiempo de ejecución de los métodos abordados, así como la posibilidad de resolver problemas de gran escala de forma eficiente.
dc.format.extent.es.fl_str_mv 149 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Dufrechou, E. Accelerating advanced preconditioning methods on hybrid architectures [en línea]. Tesis de doctorado. Montevideo : Udelar. FI - PEDECIBA, 2019.
dc.identifier.issn.none.fl_str_mv 1688-2776
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/22325
dc.language.iso.none.fl_str_mv es
spa
dc.publisher.es.fl_str_mv Udelar.FI
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Sistemas lineales dispersos
Precondicionadores
Unidades de Procesamiento Gráfico (GPU)
Paralelismo de datos
ILUPACK.
dc.title.none.fl_str_mv Accelerating advanced preconditioning methods on hybrid architectures
dc.type.es.fl_str_mv Tesis de doctorado
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description Un gran número de problemas, en diversas áreas de la ciencia y la ingeniería, involucran la solución de sistemas dispersos de ecuaciones lineales de gran escala. En muchos de estos escenarios, son además un cuello de botella desde el punto de vista computacional, y por esa razón, su implementación eficiente ha motivado una cantidad enorme de trabajos científicos. Por muchos años, los métodos directos basados en el proceso de la Eliminación Gaussiana han sido la herramienta de referencia para resolver dichos sistemas, pero la dimensión de los problemas abordados actualmente impone serios desafíos a la mayoría de estos algoritmos, considerando sus requerimientos de memoria, su tiempo de cómputo y la complejidad de su implementación. Propulsados por los avances en las técnicas de precondicionado, los métodos iterativos se han vuelto más confiables, y por lo tanto emergen como alternativas a los métodos directos, ofreciendo soluciones de alta calidad a un menor costo computacional. Sin embargo, estos avances muchas veces son relativos a un problema específico, o dotan a los precondicionadores de una complejidad tal, que su aplicación en diversos problemas se vuelve poco práctica en términos de tiempo de ejecución y consumo de memoria. Como respuesta a esta situación, es común la utilización de estrategias de Computación de Alto Desempeño, ya que el desarrollo sostenido de las plataformas de hardware permite la ejecución simultánea de cada vez más operaciones. Un claro ejemplo de esta evolución son las plataformas compuestas por procesadores multi-núcleo y aceleradoras de hardware como las Unidades de Procesamiento Gráfico (GPU). Particularmente, las GPU se han convertido en poderosos procesadores paralelos, capaces de integrar miles de núcleos a precios y consumo energético razonables.Por estas razones, las GPU son ahora una plataforma de hardware de gran importancia para la ciencia y la ingeniería, y su uso eficiente es crucial para alcanzar un buen desempeño en la mayoría de las aplicaciones. Esta tesis se centra en el uso de GPUs para acelerar la solución de sistemas dispersos de ecuaciones lineales usando métodos iterativos precondicionados con técnicas modernas. En particular, se trabaja sobre ILUPACK, que ofrece implementaciones de los métodos iterativos más importantes, y presenta un interesante y moderno precondicionador de tipo ILU multinivel. En este trabajo, se desarrollan versiones del precondicionador y de los métodos incluidos en el paquete, capaces de explotar el paralelismo de datos mediante el uso de GPUs sin afectar las propiedades numéricas del precondicionador. Además, se habilita y analiza el uso de las GPU en versiones paralelas existentes, basadas en paralelismo de tareas para plataformas de memoria compartida y distribuida. Los resultados obtenidos muestran una sensible mejora en el tiempo de ejecución de los métodos abordados, así como la posibilidad de resolver problemas de gran escala de forma eficiente.
eu_rights_str_mv openAccess
format doctoralThesis
id COLIBRI_fe9073160820113565ca1ababae4c5ad
identifier_str_mv Dufrechou, E. Accelerating advanced preconditioning methods on hybrid architectures [en línea]. Tesis de doctorado. Montevideo : Udelar. FI - PEDECIBA, 2019.
1688-2776
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/22325
publishDate 2019
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Dufrechou Ernesto, Universidad de la República (Uruguay). Facultad de Ingeniería2019-11-12T17:06:15Z2019-11-12T17:06:15Z2019Dufrechou, E. Accelerating advanced preconditioning methods on hybrid architectures [en línea]. Tesis de doctorado. Montevideo : Udelar. FI - PEDECIBA, 2019.1688-2776https://hdl.handle.net/20.500.12008/22325Un gran número de problemas, en diversas áreas de la ciencia y la ingeniería, involucran la solución de sistemas dispersos de ecuaciones lineales de gran escala. En muchos de estos escenarios, son además un cuello de botella desde el punto de vista computacional, y por esa razón, su implementación eficiente ha motivado una cantidad enorme de trabajos científicos. Por muchos años, los métodos directos basados en el proceso de la Eliminación Gaussiana han sido la herramienta de referencia para resolver dichos sistemas, pero la dimensión de los problemas abordados actualmente impone serios desafíos a la mayoría de estos algoritmos, considerando sus requerimientos de memoria, su tiempo de cómputo y la complejidad de su implementación. Propulsados por los avances en las técnicas de precondicionado, los métodos iterativos se han vuelto más confiables, y por lo tanto emergen como alternativas a los métodos directos, ofreciendo soluciones de alta calidad a un menor costo computacional. Sin embargo, estos avances muchas veces son relativos a un problema específico, o dotan a los precondicionadores de una complejidad tal, que su aplicación en diversos problemas se vuelve poco práctica en términos de tiempo de ejecución y consumo de memoria. Como respuesta a esta situación, es común la utilización de estrategias de Computación de Alto Desempeño, ya que el desarrollo sostenido de las plataformas de hardware permite la ejecución simultánea de cada vez más operaciones. Un claro ejemplo de esta evolución son las plataformas compuestas por procesadores multi-núcleo y aceleradoras de hardware como las Unidades de Procesamiento Gráfico (GPU). Particularmente, las GPU se han convertido en poderosos procesadores paralelos, capaces de integrar miles de núcleos a precios y consumo energético razonables.Por estas razones, las GPU son ahora una plataforma de hardware de gran importancia para la ciencia y la ingeniería, y su uso eficiente es crucial para alcanzar un buen desempeño en la mayoría de las aplicaciones. Esta tesis se centra en el uso de GPUs para acelerar la solución de sistemas dispersos de ecuaciones lineales usando métodos iterativos precondicionados con técnicas modernas. En particular, se trabaja sobre ILUPACK, que ofrece implementaciones de los métodos iterativos más importantes, y presenta un interesante y moderno precondicionador de tipo ILU multinivel. En este trabajo, se desarrollan versiones del precondicionador y de los métodos incluidos en el paquete, capaces de explotar el paralelismo de datos mediante el uso de GPUs sin afectar las propiedades numéricas del precondicionador. Además, se habilita y analiza el uso de las GPU en versiones paralelas existentes, basadas en paralelismo de tareas para plataformas de memoria compartida y distribuida. Los resultados obtenidos muestran una sensible mejora en el tiempo de ejecución de los métodos abordados, así como la posibilidad de resolver problemas de gran escala de forma eficiente.Submitted by Cabrera Gabriela (gfcabrerarossi@gmail.com) on 2019-11-04T13:15:59Z No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) ED19.pdf: 3437283 bytes, checksum: 3af471bec6304be42a5784aa5e09ca97 (MD5)Rejected by Machado Jimena (jmachado@fing.edu.uy), reason: Gabriela! para arreglar lo que hablamos. on 2019-11-12T14:54:09Z (GMT)Submitted by Cabrera Gabriela (gfcabrerarossi@gmail.com) on 2019-11-12T14:59:52Z No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) ED19.pdf: 3437283 bytes, checksum: 3af471bec6304be42a5784aa5e09ca97 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2019-11-12T17:04:01Z (GMT) No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) ED19.pdf: 3437283 bytes, checksum: 3af471bec6304be42a5784aa5e09ca97 (MD5)Made available in DSpace on 2019-11-12T17:06:15Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) ED19.pdf: 3437283 bytes, checksum: 3af471bec6304be42a5784aa5e09ca97 (MD5) Previous issue date: 2019149 p.application/pdfesspaUdelar.FILas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Sistemas lineales dispersosPrecondicionadoresUnidades de Procesamiento Gráfico (GPU)Paralelismo de datosILUPACK.Accelerating advanced preconditioning methods on hybrid architecturesTesis de doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaDufrechou, ErnestoEzzatti, PabloQuintana-Ortí, EnriqueUniversidad de la República (Uruguay). Facultad de IngenieríaDoctor en InformáticaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/22325/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/22325/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838519http://localhost:8080/xmlui/bitstream/20.500.12008/22325/3/license_textb45ec3165ecd1147572d096594b1ae07MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://localhost:8080/xmlui/bitstream/20.500.12008/22325/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALED19.pdfED19.pdfapplication/pdf3437283http://localhost:8080/xmlui/bitstream/20.500.12008/22325/1/ED19.pdf3af471bec6304be42a5784aa5e09ca97MD5120.500.12008/223252020-10-28 12:54:28.445oai:colibri.udelar.edu.uy:20.500.12008/22325VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:26.220187COLIBRI - Universidad de la Repúblicafalse
spellingShingle Accelerating advanced preconditioning methods on hybrid architectures
Dufrechou, Ernesto
Sistemas lineales dispersos
Precondicionadores
Unidades de Procesamiento Gráfico (GPU)
Paralelismo de datos
ILUPACK.
status_str acceptedVersion
title Accelerating advanced preconditioning methods on hybrid architectures
title_full Accelerating advanced preconditioning methods on hybrid architectures
title_fullStr Accelerating advanced preconditioning methods on hybrid architectures
title_full_unstemmed Accelerating advanced preconditioning methods on hybrid architectures
title_short Accelerating advanced preconditioning methods on hybrid architectures
title_sort Accelerating advanced preconditioning methods on hybrid architectures
topic Sistemas lineales dispersos
Precondicionadores
Unidades de Procesamiento Gráfico (GPU)
Paralelismo de datos
ILUPACK.
url https://hdl.handle.net/20.500.12008/22325