Predicción mediante modelos ARFIMA y FOU de energía afluente
Prediction using ARFIMA and FOU models of affluent energy
Resumen:
En este trabajo se estudian predicciones a partir de modelos ARFIMA y FOU para la serie de datos semanales de energía afluente generada por las represas hidroeléctricas de Uruguay entre 1909 y 2012. Se describe la serie de datos, y mediante la estimación del exponente de Hurst se muestra la conveniencia de modelar a través de procesos de memoria larga. Se presentan dos familias de modelos de series de tiempo de este tipo, los ARFIMA y los FOU (Ornstein-Uhlenbeck fraccionarios). Se estiman sus parámetros y se compara el rendimiento de los mismos teniendo en cuenta su poder predictivo.
In this work we study predictions from ARFIMA and FOU models for the weekly data series of affluent energy generated by hydroelectric dams in Uruguay between 1909 and 2012. The estimation of Hurst coefficient suggests modeling through long memory time series. We present two families of time series models of this type, ARFIMA and FOU (fractional Ornstein-Uhlenbeck) models. Their parameters are estimated and taking into account their predictive power, their performance is compared.
2017 | |
Modelos ARFIMA Ornstein-Uhlenbeck fraccionarios Memoria larga ARFIMA model Fractional Ornstein-Uhlenbeck Long range dependence |
|
Español | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/24809 | |
Acceso abierto | |
Licencia Creative Commons Atribución (CC - By 4.0) |
_version_ | 1807522783278661632 |
---|---|
author | Kalemkerian, Juan |
author_facet | Kalemkerian, Juan |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a0ebbeafb9d2ec7cbb19d7137ebc392c bc65db270d5b12e62bf38c1dfe0e5fff 9fdbed07f52437945402c4e70fa4773e 41c984d5ef867dc14ca489fcca6510cc |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/24809/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/24809/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/24809/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/24809/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/24809/1/Kal2017PRE.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Kalemkerian Juan, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática. |
dc.creator.none.fl_str_mv | Kalemkerian, Juan |
dc.date.accessioned.none.fl_str_mv | 2020-07-28T18:39:21Z |
dc.date.available.none.fl_str_mv | 2020-07-28T18:39:21Z |
dc.date.issued.none.fl_str_mv | 2017 |
dc.description.abstract.none.fl_txt_mv | En este trabajo se estudian predicciones a partir de modelos ARFIMA y FOU para la serie de datos semanales de energía afluente generada por las represas hidroeléctricas de Uruguay entre 1909 y 2012. Se describe la serie de datos, y mediante la estimación del exponente de Hurst se muestra la conveniencia de modelar a través de procesos de memoria larga. Se presentan dos familias de modelos de series de tiempo de este tipo, los ARFIMA y los FOU (Ornstein-Uhlenbeck fraccionarios). Se estiman sus parámetros y se compara el rendimiento de los mismos teniendo en cuenta su poder predictivo. In this work we study predictions from ARFIMA and FOU models for the weekly data series of affluent energy generated by hydroelectric dams in Uruguay between 1909 and 2012. The estimation of Hurst coefficient suggests modeling through long memory time series. We present two families of time series models of this type, ARFIMA and FOU (fractional Ornstein-Uhlenbeck) models. Their parameters are estimated and taking into account their predictive power, their performance is compared. |
dc.format.extent.es.fl_str_mv | 16 h |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Kalemkerian, J. "Predicción mediante modelos ARFIMA y FOU de energía afluente". Memoria Investigaciones en Ingeniería. [en línea] 2017, 15(1): 109-124. 16 h. |
dc.identifier.issn.none.fl_str_mv | 2301-1106 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/24809 |
dc.language.iso.none.fl_str_mv | es spa |
dc.publisher.es.fl_str_mv | Universidad de Montevideo |
dc.relation.ispartof.es.fl_str_mv | Memoria Investigaciones en Ingeniería, 2017, 15(1): 109-124 |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución (CC - By 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Modelos ARFIMA Ornstein-Uhlenbeck fraccionarios Memoria larga ARFIMA model Fractional Ornstein-Uhlenbeck Long range dependence |
dc.title.none.fl_str_mv | Predicción mediante modelos ARFIMA y FOU de energía afluente Prediction using ARFIMA and FOU models of affluent energy |
dc.type.es.fl_str_mv | Artículo |
dc.type.none.fl_str_mv | info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | En este trabajo se estudian predicciones a partir de modelos ARFIMA y FOU para la serie de datos semanales de energía afluente generada por las represas hidroeléctricas de Uruguay entre 1909 y 2012. Se describe la serie de datos, y mediante la estimación del exponente de Hurst se muestra la conveniencia de modelar a través de procesos de memoria larga. Se presentan dos familias de modelos de series de tiempo de este tipo, los ARFIMA y los FOU (Ornstein-Uhlenbeck fraccionarios). Se estiman sus parámetros y se compara el rendimiento de los mismos teniendo en cuenta su poder predictivo. |
eu_rights_str_mv | openAccess |
format | article |
id | COLIBRI_fdf59162676fdf4638e77ee1748c4c06 |
identifier_str_mv | Kalemkerian, J. "Predicción mediante modelos ARFIMA y FOU de energía afluente". Memoria Investigaciones en Ingeniería. [en línea] 2017, 15(1): 109-124. 16 h. 2301-1106 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | spa |
language_invalid_str_mv | es |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/24809 |
publishDate | 2017 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución (CC - By 4.0) |
spelling | Kalemkerian Juan, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática.2020-07-28T18:39:21Z2020-07-28T18:39:21Z2017Kalemkerian, J. "Predicción mediante modelos ARFIMA y FOU de energía afluente". Memoria Investigaciones en Ingeniería. [en línea] 2017, 15(1): 109-124. 16 h.2301-1106https://hdl.handle.net/20.500.12008/24809En este trabajo se estudian predicciones a partir de modelos ARFIMA y FOU para la serie de datos semanales de energía afluente generada por las represas hidroeléctricas de Uruguay entre 1909 y 2012. Se describe la serie de datos, y mediante la estimación del exponente de Hurst se muestra la conveniencia de modelar a través de procesos de memoria larga. Se presentan dos familias de modelos de series de tiempo de este tipo, los ARFIMA y los FOU (Ornstein-Uhlenbeck fraccionarios). Se estiman sus parámetros y se compara el rendimiento de los mismos teniendo en cuenta su poder predictivo.In this work we study predictions from ARFIMA and FOU models for the weekly data series of affluent energy generated by hydroelectric dams in Uruguay between 1909 and 2012. The estimation of Hurst coefficient suggests modeling through long memory time series. We present two families of time series models of this type, ARFIMA and FOU (fractional Ornstein-Uhlenbeck) models. Their parameters are estimated and taking into account their predictive power, their performance is compared.Submitted by Faget Cecilia (lfaget@fcien.edu.uy) on 2020-07-28T14:10:33Z No. of bitstreams: 2 license_rdf: 19875 bytes, checksum: 9fdbed07f52437945402c4e70fa4773e (MD5) Kal2017PRE.pdf: 1268980 bytes, checksum: 41c984d5ef867dc14ca489fcca6510cc (MD5)Approved for entry into archive by Faget Cecilia (lfaget@fcien.edu.uy) on 2020-07-28T14:29:50Z (GMT) No. of bitstreams: 2 license_rdf: 19875 bytes, checksum: 9fdbed07f52437945402c4e70fa4773e (MD5) Kal2017PRE.pdf: 1268980 bytes, checksum: 41c984d5ef867dc14ca489fcca6510cc (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@fic.edu.uy) on 2020-07-28T18:39:21Z (GMT). No. of bitstreams: 2 license_rdf: 19875 bytes, checksum: 9fdbed07f52437945402c4e70fa4773e (MD5) Kal2017PRE.pdf: 1268980 bytes, checksum: 41c984d5ef867dc14ca489fcca6510cc (MD5) Previous issue date: 201716 happlication/pdfesspaUniversidad de MontevideoMemoria Investigaciones en Ingeniería, 2017, 15(1): 109-124Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución (CC - By 4.0)Modelos ARFIMAOrnstein-Uhlenbeck fraccionariosMemoria largaARFIMA modelFractional Ornstein-UhlenbeckLong range dependencePredicción mediante modelos ARFIMA y FOU de energía afluentePrediction using ARFIMA and FOU models of affluent energyArtículoinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaKalemkerian, JuanLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/24809/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-844http://localhost:8080/xmlui/bitstream/20.500.12008/24809/2/license_urla0ebbeafb9d2ec7cbb19d7137ebc392cMD52license_textlicense_texttext/html; charset=utf-838468http://localhost:8080/xmlui/bitstream/20.500.12008/24809/3/license_textbc65db270d5b12e62bf38c1dfe0e5fffMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-819875http://localhost:8080/xmlui/bitstream/20.500.12008/24809/4/license_rdf9fdbed07f52437945402c4e70fa4773eMD54ORIGINALKal2017PRE.pdfKal2017PRE.pdfapplication/pdf1268980http://localhost:8080/xmlui/bitstream/20.500.12008/24809/1/Kal2017PRE.pdf41c984d5ef867dc14ca489fcca6510ccMD5120.500.12008/248092021-03-03 19:42:15.528oai:colibri.udelar.edu.uy:20.500.12008/24809VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:28:19.029300COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Predicción mediante modelos ARFIMA y FOU de energía afluente Kalemkerian, Juan Modelos ARFIMA Ornstein-Uhlenbeck fraccionarios Memoria larga ARFIMA model Fractional Ornstein-Uhlenbeck Long range dependence |
status_str | publishedVersion |
title | Predicción mediante modelos ARFIMA y FOU de energía afluente |
title_full | Predicción mediante modelos ARFIMA y FOU de energía afluente |
title_fullStr | Predicción mediante modelos ARFIMA y FOU de energía afluente |
title_full_unstemmed | Predicción mediante modelos ARFIMA y FOU de energía afluente |
title_short | Predicción mediante modelos ARFIMA y FOU de energía afluente |
title_sort | Predicción mediante modelos ARFIMA y FOU de energía afluente |
topic | Modelos ARFIMA Ornstein-Uhlenbeck fraccionarios Memoria larga ARFIMA model Fractional Ornstein-Uhlenbeck Long range dependence |
url | https://hdl.handle.net/20.500.12008/24809 |