Predicción mediante modelos ARFIMA y FOU de energía afluente

Prediction using ARFIMA and FOU models of affluent energy

Kalemkerian, Juan

Resumen:

En este trabajo se estudian predicciones a partir de modelos ARFIMA y FOU para la serie de datos semanales de energía afluente generada por las represas hidroeléctricas de Uruguay entre 1909 y 2012. Se describe la serie de datos, y mediante la estimación del exponente de Hurst se muestra la conveniencia de modelar a través de procesos de memoria larga. Se presentan dos familias de modelos de series de tiempo de este tipo, los ARFIMA y los FOU (Ornstein-Uhlenbeck fraccionarios). Se estiman sus parámetros y se compara el rendimiento de los mismos teniendo en cuenta su poder predictivo.


In this work we study predictions from ARFIMA and FOU models for the weekly data series of affluent energy generated by hydroelectric dams in Uruguay between 1909 and 2012. The estimation of Hurst coefficient suggests modeling through long memory time series. We present two families of time series models of this type, ARFIMA and FOU (fractional Ornstein-Uhlenbeck) models. Their parameters are estimated and taking into account their predictive power, their performance is compared.


Detalles Bibliográficos
2017
Modelos ARFIMA
Ornstein-Uhlenbeck fraccionarios
Memoria larga
ARFIMA model
Fractional Ornstein-Uhlenbeck
Long range dependence
Español
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/24809
Acceso abierto
Licencia Creative Commons Atribución (CC - By 4.0)
Resumen:
Sumario:En este trabajo se estudian predicciones a partir de modelos ARFIMA y FOU para la serie de datos semanales de energía afluente generada por las represas hidroeléctricas de Uruguay entre 1909 y 2012. Se describe la serie de datos, y mediante la estimación del exponente de Hurst se muestra la conveniencia de modelar a través de procesos de memoria larga. Se presentan dos familias de modelos de series de tiempo de este tipo, los ARFIMA y los FOU (Ornstein-Uhlenbeck fraccionarios). Se estiman sus parámetros y se compara el rendimiento de los mismos teniendo en cuenta su poder predictivo.