Predicción de precios de la vivienda : aprendizaje estadístico con datos de ofertas y transacciones para Montevideo
Supervisor(es): Borraz,Fernando - Da Silva, Natalia - Román, Carolina
Resumen:
En este trabajo se presentan modelos predictivos para el precio de un activo de difícil valuación como la vivienda. Se utilizan dos fuentes de datos novedosas para la ciudad de Montevideo: una proveniente de sitios web obtenidos mediante web scraping (para el per odo febrero 2018 - enero 2019) y otra de registros administrativos de transacciones de la Direcci on General de Registros (DGR) para el per odo enero 2017 - julio 2018. Se implementan tres modelos fácilmente replicables: modelo lineal, arbol de regresión y bosques aleatorios, y se compara su poder predictivo. Los resultados arrojan una mejor performance del modelo de bosques aleatorios (Random Forest) respecto al modelo lineal hedónico, ampliamente difundido en la literatura. Se busca incorporar al análisis de predicción de precios una metodología aún escasamente difundida a nivel nacional así como poner a disposición una nueva base de datos.
This work presents predictive models of a hard-valuation asset like housing. With this aim, two data bases were gathered for the city of Montevideo: on-line publications through web scraping (February 2018 - January 2019) and transactional data from the National Registration Office (January 2017 - July2018). Three easily replicable models are trained: linear model, regression treeand random forest, and their predictive power is compared. Results show bet-ter predictive power with simple random forest models than those obtained with the classic linear hedonic model. The main objective is to incorporate into the price prediction analysis a still poorly disseminated methodology atnational level, as well as to make a new database available.
2019 | |
Precios de vivienda Aprendizaje estadístico Bosques Aleatorios CART Valuación de activos Precios online Datos geo-referenciados MERCADO INMOBILIARIO VALOR DE LA VIVIENDA APRENDIZAJE AUTOMATICO ARBOLES DE REGRESION Y CLASIFICACION ARBOLES DE DECISION METODOS DE APRENDIZAJE ESTADISTICOS |
|
Español | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/31111 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807522835845873664 |
---|---|
author | Picardo Suárez, Pablo |
author_facet | Picardo Suárez, Pablo |
author_role | author |
bitstream.checksum.fl_str_mv | 7f2e2c17ef6585de66da58d1bfa8b5e1 c160655373669e9e820be72396ec31f1 a006180e3f5b2ad0b88185d14284c0e0 1ad3fb9b6ddf205c397f9b25547bba95 5fca4d4c8c5644e736e67972827ef506 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/31111/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/31111/2/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/31111/3/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/31111/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/31111/1/TM222.pdf |
collection | COLIBRI |
dc.creator.advisor.none.fl_str_mv | Borraz,Fernando Da Silva, Natalia Román, Carolina |
dc.creator.none.fl_str_mv | Picardo Suárez, Pablo |
dc.date.accessioned.none.fl_str_mv | 2022-03-22T18:52:12Z |
dc.date.available.none.fl_str_mv | 2022-03-22T18:52:12Z |
dc.date.issued.es.fl_str_mv | 2019 |
dc.date.submitted.es.fl_str_mv | 20220322 |
dc.description.abstract.none.fl_txt_mv | En este trabajo se presentan modelos predictivos para el precio de un activo de difícil valuación como la vivienda. Se utilizan dos fuentes de datos novedosas para la ciudad de Montevideo: una proveniente de sitios web obtenidos mediante web scraping (para el per odo febrero 2018 - enero 2019) y otra de registros administrativos de transacciones de la Direcci on General de Registros (DGR) para el per odo enero 2017 - julio 2018. Se implementan tres modelos fácilmente replicables: modelo lineal, arbol de regresión y bosques aleatorios, y se compara su poder predictivo. Los resultados arrojan una mejor performance del modelo de bosques aleatorios (Random Forest) respecto al modelo lineal hedónico, ampliamente difundido en la literatura. Se busca incorporar al análisis de predicción de precios una metodología aún escasamente difundida a nivel nacional así como poner a disposición una nueva base de datos. This work presents predictive models of a hard-valuation asset like housing. With this aim, two data bases were gathered for the city of Montevideo: on-line publications through web scraping (February 2018 - January 2019) and transactional data from the National Registration Office (January 2017 - July2018). Three easily replicable models are trained: linear model, regression treeand random forest, and their predictive power is compared. Results show bet-ter predictive power with simple random forest models than those obtained with the classic linear hedonic model. The main objective is to incorporate into the price prediction analysis a still poorly disseminated methodology atnational level, as well as to make a new database available. |
dc.format.extent.es.fl_str_mv | 77 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Picardo Suárez, P. Predicción de precios de la vivienda : aprendizaje estadístico con datos de ofertas y transacciones para Montevideo [en línea] Tesis de maestría. Montevideo : Udelar. FCEA, 2019. |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/31111 |
dc.language.iso.none.fl_str_mv | es spa |
dc.publisher.es.fl_str_mv | Udelar. FCEA |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Precios de vivienda Aprendizaje estadístico Bosques Aleatorios CART Valuación de activos Precios online Datos geo-referenciados |
dc.subject.other.es.fl_str_mv | MERCADO INMOBILIARIO VALOR DE LA VIVIENDA APRENDIZAJE AUTOMATICO ARBOLES DE REGRESION Y CLASIFICACION ARBOLES DE DECISION METODOS DE APRENDIZAJE ESTADISTICOS |
dc.title.none.fl_str_mv | Predicción de precios de la vivienda : aprendizaje estadístico con datos de ofertas y transacciones para Montevideo |
dc.type.es.fl_str_mv | Tesis de maestría |
dc.type.none.fl_str_mv | info:eu-repo/semantics/masterThesis |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/acceptedVersion |
description | En este trabajo se presentan modelos predictivos para el precio de un activo de difícil valuación como la vivienda. Se utilizan dos fuentes de datos novedosas para la ciudad de Montevideo: una proveniente de sitios web obtenidos mediante web scraping (para el per odo febrero 2018 - enero 2019) y otra de registros administrativos de transacciones de la Direcci on General de Registros (DGR) para el per odo enero 2017 - julio 2018. Se implementan tres modelos fácilmente replicables: modelo lineal, arbol de regresión y bosques aleatorios, y se compara su poder predictivo. Los resultados arrojan una mejor performance del modelo de bosques aleatorios (Random Forest) respecto al modelo lineal hedónico, ampliamente difundido en la literatura. Se busca incorporar al análisis de predicción de precios una metodología aún escasamente difundida a nivel nacional así como poner a disposición una nueva base de datos. |
eu_rights_str_mv | openAccess |
format | masterThesis |
id | COLIBRI_fc52a1c67b064efc3f5f9dd43819ce34 |
identifier_str_mv | Picardo Suárez, P. Predicción de precios de la vivienda : aprendizaje estadístico con datos de ofertas y transacciones para Montevideo [en línea] Tesis de maestría. Montevideo : Udelar. FCEA, 2019. |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | spa |
language_invalid_str_mv | es |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/31111 |
publishDate | 2019 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | 2022-03-22T18:52:12Z2022-03-22T18:52:12Z201920220322Picardo Suárez, P. Predicción de precios de la vivienda : aprendizaje estadístico con datos de ofertas y transacciones para Montevideo [en línea] Tesis de maestría. Montevideo : Udelar. FCEA, 2019.https://hdl.handle.net/20.500.12008/31111En este trabajo se presentan modelos predictivos para el precio de un activo de difícil valuación como la vivienda. Se utilizan dos fuentes de datos novedosas para la ciudad de Montevideo: una proveniente de sitios web obtenidos mediante web scraping (para el per odo febrero 2018 - enero 2019) y otra de registros administrativos de transacciones de la Direcci on General de Registros (DGR) para el per odo enero 2017 - julio 2018. Se implementan tres modelos fácilmente replicables: modelo lineal, arbol de regresión y bosques aleatorios, y se compara su poder predictivo. Los resultados arrojan una mejor performance del modelo de bosques aleatorios (Random Forest) respecto al modelo lineal hedónico, ampliamente difundido en la literatura. Se busca incorporar al análisis de predicción de precios una metodología aún escasamente difundida a nivel nacional así como poner a disposición una nueva base de datos.This work presents predictive models of a hard-valuation asset like housing. With this aim, two data bases were gathered for the city of Montevideo: on-line publications through web scraping (February 2018 - January 2019) and transactional data from the National Registration Office (January 2017 - July2018). Three easily replicable models are trained: linear model, regression treeand random forest, and their predictive power is compared. Results show bet-ter predictive power with simple random forest models than those obtained with the classic linear hedonic model. The main objective is to incorporate into the price prediction analysis a still poorly disseminated methodology atnational level, as well as to make a new database available.Made available in DSpace on 2022-03-22T18:52:12Z (GMT). No. of bitstreams: 5 TM222.pdf: 11125045 bytes, checksum: 5fca4d4c8c5644e736e67972827ef506 (MD5) license_text: 38518 bytes, checksum: c160655373669e9e820be72396ec31f1 (MD5) license_url: 50 bytes, checksum: a006180e3f5b2ad0b88185d14284c0e0 (MD5) license_rdf: 11336 bytes, checksum: 1ad3fb9b6ddf205c397f9b25547bba95 (MD5) license.txt: 4194 bytes, checksum: 7f2e2c17ef6585de66da58d1bfa8b5e1 (MD5) Previous issue date: 201977 p.application/pdfesspaUdelar. FCEALas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Precios de viviendaAprendizaje estadísticoBosques AleatoriosCARTValuación de activosPrecios onlineDatos geo-referenciadosMERCADO INMOBILIARIOVALOR DE LA VIVIENDAAPRENDIZAJE AUTOMATICOARBOLES DE REGRESION Y CLASIFICACIONARBOLES DE DECISIONMETODOS DE APRENDIZAJE ESTADISTICOSPredicción de precios de la vivienda : aprendizaje estadístico con datos de ofertas y transacciones para MontevideoTesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaPicardo Suárez, PabloBorraz,FernandoDa Silva, NataliaRomán, CarolinaUniversidad de la República (Uruguay). Facultad de Ciencias Económicas y de AdministraciónMagíster en EconomíaLICENSElicense.txttext/plain4194http://localhost:8080/xmlui/bitstream/20.500.12008/31111/5/license.txt7f2e2c17ef6585de66da58d1bfa8b5e1MD55CC-LICENSElicense_textapplication/octet-stream38518http://localhost:8080/xmlui/bitstream/20.500.12008/31111/2/license_textc160655373669e9e820be72396ec31f1MD52license_urlapplication/octet-stream50http://localhost:8080/xmlui/bitstream/20.500.12008/31111/3/license_urla006180e3f5b2ad0b88185d14284c0e0MD53license_rdfapplication/octet-stream11336http://localhost:8080/xmlui/bitstream/20.500.12008/31111/4/license_rdf1ad3fb9b6ddf205c397f9b25547bba95MD54ORIGINALTM222.pdfapplication/pdf11125045http://localhost:8080/xmlui/bitstream/20.500.12008/31111/1/TM222.pdf5fca4d4c8c5644e736e67972827ef506MD5120.500.12008/311112022-03-22 15:52:12.338oai:colibri.udelar.edu.uy:20.500.12008/31111VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDvv71ibGljYS4gKFJlcy4gTu+/vSA5MSBkZSBDLkQuQy4gZGUgOC9JSUkvMTk5NCDvv70gRC5PLiA3L0lWLzE5OTQpIHkgIHBvciBsYSBPcmRlbmFuemEgZGVsIFJlcG9zaXRvcmlvIEFiaWVydG8gZGUgbGEgVW5pdmVyc2lkYWQgZGUgbGEgUmVw77+9YmxpY2EgKFJlcy4gTu+/vSAxNiBkZSBDLkQuQy4gZGUgMDcvMTAvMjAxNCkuIAoKQWNlcHRhbmRvIGVsIGF1dG9yIGVzdG9zIHTvv71ybWlub3MgeSBjb25kaWNpb25lcyBkZSBkZXDvv71zaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcO+/vWJsaWNhIHByb2NlZGVy77+9IGE6ICAKCmEpIGFyY2hpdmFyIG3vv71zIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nvv71uCmIpIGNvbnZlcnRpciBsYSBvYnJhIGEgb3Ryb3MgZm9ybWF0b3Mgc2kgZnVlcmEgbmVjZXNhcmlvICBwYXJhIGZhY2lsaXRhciBzdSBwcmVzZXJ2YWNp77+9biB5IGFjY2VzaWJpbGlkYWQgc2luIGFsdGVyYXIgc3UgY29udGVuaWRvLgpjKSByZWFsaXphciBsYSBjb211bmljYWNp77+9biBw77+9YmxpY2EgeSBkaXNwb25lciBlbCBhY2Nlc28gbGlicmUgeSBncmF0dWl0byBhIHRyYXbvv71zIGRlIEludGVybmV0IG1lZGlhbnRlIGxhIHB1YmxpY2Fjae+/vW4gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcu+/vSBzb2xpY2l0YXIgdW4gcGVy77+9b2RvIGRlIGVtYmFyZ28gc29icmUgbGEgZGlzcG9uaWJpbGlkYWQgcO+/vWJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFy77+9IGEgcGFydGlyIGRlIGxhIGFjZXB0YWNp77+9biBkZSBlc3RlIGRvY3VtZW50byB5IGhhc3RhIGxhIGZlY2hhIHF1ZSBpbmRpcXVlIC4KCkVsIGF1dG9yIGFzZWd1cmEgcXVlIGxhIG9icmEgbm8gaW5mcmlnZSBuaW5n77+9biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdO+/vSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyB5IHJlY29ub2NpZG8gZW4gZWwgdGV4dG8gbyBjb250ZW5pZG8gZGVsIGRvY3VtZW50byBkZXBvc2l0YWRvIGVuIGVsIFJlcG9zaXRvcmlvLgoKRW4gb2JyYXMgZGUgYXV0b3Lvv71hIG3vv71sdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDvv71zdGUgZWwg77+9bmljbyByZXNwb25zYWJsZSBmcmVudGUgYSBjdWFscXVpZXIgdGlwbyBkZSByZWNsYW1hY2nvv71uIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLvv70gcmVzcG9uc2FibGUgZGVsIGNvbnRlbmlkbyBkZSBsb3MgZG9jdW1lbnRvcyBxdWUgZGVwb3NpdGEuIExhIFVERUxBUiBubyBzZXLvv70gcmVzcG9uc2FibGUgcG9yIGxhcyBldmVudHVhbGVzIHZpb2xhY2lvbmVzIGFsIGRlcmVjaG8gZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIHF1ZSBwdWVkYSBpbmN1cnJpciBlbCBhdXRvci4KCkFudGUgY3VhbHF1aWVyIGRlbnVuY2lhIGRlIHZpb2xhY2nvv71uIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFy77+9IHRvZGFzIGxhcyBtZWRpZGFzIG5lY2VzYXJpYXMgcGFyYSBldml0YXIgbGEgY29udGludWFjae+/vW4gZGUgZGljaGEgaW5mcmFjY2nvv71uLCBsYXMgcXVlIHBvZHLvv71uIGluY2x1aXIgZWwgcmV0aXJvIGRlbCBhY2Nlc28gYSBsb3MgY29udGVuaWRvcyB5L28gbWV0YWRhdG9zIGRlbCBkb2N1bWVudG8gcmVzcGVjdGl2by4KCkxhIG9icmEgc2UgcG9uZHLvv70gYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28gYSB0cmF277+9cyBkZSBsYXMgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMsIGVsIGF1dG9yIHBvZHLvv70gc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjae+/vW4gKENDIC0gQnkpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgc2llbXByZSBxdWUgc2UgcmVjb25vemNhIGFsIGF1dG9yLgoKQXRyaWJ1Y2nvv71uIO+/vSBDb21wYXJ0aXIgSWd1YWwgKENDIC0gQnktU0EpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgcGVybyBsYSBkaXN0cmlidWNp77+9biBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTvv71udGljYSBhIGxhIGRlIGxhIG9icmEgb3JpZ2luYWwsIHJlY29ub2NpZW5kbyBhIGxvcyBhdXRvcmVzLgoKQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwgKENDIC0gQnktTkMpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBzaWVtcHJlIHkgY3VhbmRvIGVzb3MgdXNvcyBubyB0ZW5nYW4gZmluZXMgY29tZXJjaWFsZXMsIHJlY29ub2NpZW5kbyBhbCBhdXRvci4KCkF0cmlidWNp77+9biDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNp77+9biDvv70gTm8gQ29tZXJjaWFsIO+/vSBDb21wYXJ0aXIgSWd1YWwgKENDIO+/vSBCeS1OQy1TQSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIHNpZW1wcmUgeSBjdWFuZG8gZXNvcyB1c29zIG5vIHRlbmdhbiBmaW5lcyBjb21lcmNpYWxlcyB5IGxhIGRpc3RyaWJ1Y2nvv71uIGRlIGxhcyBvYnJhcyBkZXJpdmFkYXMgc2UgaGFnYSBtZWRpYW50ZSBsaWNlbmNpYSBpZO+/vW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjae+/vW4g77+9IE5vIENvbWVyY2lhbCDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1OQy1ORCk6IFBlcm1pdGUgdXNhciBsYSBvYnJhLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMgeSBubyBzZSBwZXJtaXRlIHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkxvcyB1c29zIHByZXZpc3RvcyBlbiBsYXMgbGljZW5jaWFzIGluY2x1eWVuIGxhIGVuYWplbmFjae+/vW4sIHJlcHJvZHVjY2nvv71uLCBjb211bmljYWNp77+9biwgcHVibGljYWNp77+9biwgZGlzdHJpYnVjae+/vW4geSBwdWVzdGEgYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28uIExhIGNyZWFjae+/vW4gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nvv71uLCB0cmFkdWNjae+/vW4geSBlbCByZW1peC4KCkN1YW5kbyBzZSBzZWxlY2Npb25lIHVuYSBsaWNlbmNpYSBxdWUgaGFiaWxpdGUgdXNvcyBjb21lcmNpYWxlcywgZWwgZGVw77+9c2l0byBkZWJlcu+/vSBzZXIgYWNvbXBh77+9YWRvIGRlbCBhdmFsIGRlbCBqZXJhcmNhIG3vv714aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCgoKCgoKCgoKUniversidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:30:41.745394COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Predicción de precios de la vivienda : aprendizaje estadístico con datos de ofertas y transacciones para Montevideo Picardo Suárez, Pablo Precios de vivienda Aprendizaje estadístico Bosques Aleatorios CART Valuación de activos Precios online Datos geo-referenciados MERCADO INMOBILIARIO VALOR DE LA VIVIENDA APRENDIZAJE AUTOMATICO ARBOLES DE REGRESION Y CLASIFICACION ARBOLES DE DECISION METODOS DE APRENDIZAJE ESTADISTICOS |
status_str | acceptedVersion |
title | Predicción de precios de la vivienda : aprendizaje estadístico con datos de ofertas y transacciones para Montevideo |
title_full | Predicción de precios de la vivienda : aprendizaje estadístico con datos de ofertas y transacciones para Montevideo |
title_fullStr | Predicción de precios de la vivienda : aprendizaje estadístico con datos de ofertas y transacciones para Montevideo |
title_full_unstemmed | Predicción de precios de la vivienda : aprendizaje estadístico con datos de ofertas y transacciones para Montevideo |
title_short | Predicción de precios de la vivienda : aprendizaje estadístico con datos de ofertas y transacciones para Montevideo |
title_sort | Predicción de precios de la vivienda : aprendizaje estadístico con datos de ofertas y transacciones para Montevideo |
topic | Precios de vivienda Aprendizaje estadístico Bosques Aleatorios CART Valuación de activos Precios online Datos geo-referenciados MERCADO INMOBILIARIO VALOR DE LA VIVIENDA APRENDIZAJE AUTOMATICO ARBOLES DE REGRESION Y CLASIFICACION ARBOLES DE DECISION METODOS DE APRENDIZAJE ESTADISTICOS |
url | https://hdl.handle.net/20.500.12008/31111 |