Identificador de tendencias en Redes Sociales
Supervisor(es): Prada, Juan José - Etcheverry, Mathías
Resumen:
En la actualidad, millones de personas utilizan redes sociales para compartir mensajes, noticias y opiniones sobre diversos temas. Algunos de ellos se vuelven populares producto de una gran cantidad de mensajes publicados. En el caso específico Twitter, los mensajes públicos llamados tweets generan tendencias, en inglés llamadas Trending Topics. En este trabajo, para cada tendencia se intenta encontrar el tweet que generó la mayor repercusión, candidato a ser el que disparó la popularidad de la tendencia. De forma automatizada, se conecta con Twitter para obtener las tendencias de Uruguay y sus tweets asociados, utilizando scripts implementados con el lenguaje Python. Dado que la versión utilizada de la API de Twitter devuelve los tweets que nombran las tendencias de forma textual, tuvimos que dividir el problema en dos. En primer lugar, dada la masa de tweets cuyo texto contiene la expresión que es tendencia, fue necesario construir un clasificador utilizando un modelo de Regresión Logística para descartar aquellos que no son relevantes de procesar ya que no refieren la tendencia. Utilizando la técnica de Bag of Words y una medida de distancia relativa entre un tweet y una tendencia, calculada mediante la técnica word embeddings, se determina si un tweet es relevante o no. En segundo lugar, utilizando los tweets que refieren a una tendencia, se intenta encontrar cuál de ellos es su "disparador", intentando contemplar tanto su repercusión en la red, como el hecho de haberse publicado cuando la tendencia aún no surgió. Para esto, se entrena una Red Neuronal que analiza características como la cantidad de interacciones del tweet, su tiempo de vida, la cantidad de tweets que se generan en la siguiente hora de publicado, entre otras. Finalmente, a modo de poder visualizar la tarea realizada, se implementa utilizando NodeJS y React una aplicación web que permite seleccionar una tendencia previamente procesada, para ver cuál fue su disparador. Los resultados experimentales muestran que el modelo de clasificación determina si el tema de un tweet es relevante para su tendencia asociada con un 79% de accuracy, para un corpus de tweets construido durante el transcurso del proyecto. Por otra parte, el modelo de predicción del tweet disparador presenta un 81% de F1-score bajo las mismas condiciones. Comparando los resultados de cada momento respecto a sus líneas bases utilizadas, en ambos casos se puede afirmar que la solución implementada resuelve de mejor manera los problemas enfrentados en este proyecto.
2021 | |
Inteligencia Artificial Aprendizaje Automático Aprendizaje Supervisado Procesamiento de Lenguaje Natural Clasificación Redes Sociales Tendencia |
|
Español | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/33027 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807523228501934080 |
---|---|
author | Benelli, Juan |
author2 | Alberti, Diego |
author2_role | author |
author_facet | Benelli, Juan Alberti, Diego |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a006180e3f5b2ad0b88185d14284c0e0 36c32e9c6da50e6d55578c16944ef7f6 1996b8461bc290aef6a27d78c67b6b52 04e53d13eb036752aff5ecf6f341de99 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/33027/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/33027/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/33027/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/33027/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/33027/1/AB21.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Benelli Juan, Universidad de la República (Uruguay). Facultad de Ingeniería. Alberti Diego, Universidad de la República (Uruguay). Facultad de Ingeniería. |
dc.creator.advisor.none.fl_str_mv | Prada, Juan José Etcheverry, Mathías |
dc.creator.none.fl_str_mv | Benelli, Juan Alberti, Diego |
dc.date.accessioned.none.fl_str_mv | 2022-08-10T15:10:14Z |
dc.date.available.none.fl_str_mv | 2022-08-10T15:10:14Z |
dc.date.issued.none.fl_str_mv | 2021 |
dc.description.abstract.none.fl_txt_mv | En la actualidad, millones de personas utilizan redes sociales para compartir mensajes, noticias y opiniones sobre diversos temas. Algunos de ellos se vuelven populares producto de una gran cantidad de mensajes publicados. En el caso específico Twitter, los mensajes públicos llamados tweets generan tendencias, en inglés llamadas Trending Topics. En este trabajo, para cada tendencia se intenta encontrar el tweet que generó la mayor repercusión, candidato a ser el que disparó la popularidad de la tendencia. De forma automatizada, se conecta con Twitter para obtener las tendencias de Uruguay y sus tweets asociados, utilizando scripts implementados con el lenguaje Python. Dado que la versión utilizada de la API de Twitter devuelve los tweets que nombran las tendencias de forma textual, tuvimos que dividir el problema en dos. En primer lugar, dada la masa de tweets cuyo texto contiene la expresión que es tendencia, fue necesario construir un clasificador utilizando un modelo de Regresión Logística para descartar aquellos que no son relevantes de procesar ya que no refieren la tendencia. Utilizando la técnica de Bag of Words y una medida de distancia relativa entre un tweet y una tendencia, calculada mediante la técnica word embeddings, se determina si un tweet es relevante o no. En segundo lugar, utilizando los tweets que refieren a una tendencia, se intenta encontrar cuál de ellos es su "disparador", intentando contemplar tanto su repercusión en la red, como el hecho de haberse publicado cuando la tendencia aún no surgió. Para esto, se entrena una Red Neuronal que analiza características como la cantidad de interacciones del tweet, su tiempo de vida, la cantidad de tweets que se generan en la siguiente hora de publicado, entre otras. Finalmente, a modo de poder visualizar la tarea realizada, se implementa utilizando NodeJS y React una aplicación web que permite seleccionar una tendencia previamente procesada, para ver cuál fue su disparador. Los resultados experimentales muestran que el modelo de clasificación determina si el tema de un tweet es relevante para su tendencia asociada con un 79% de accuracy, para un corpus de tweets construido durante el transcurso del proyecto. Por otra parte, el modelo de predicción del tweet disparador presenta un 81% de F1-score bajo las mismas condiciones. Comparando los resultados de cada momento respecto a sus líneas bases utilizadas, en ambos casos se puede afirmar que la solución implementada resuelve de mejor manera los problemas enfrentados en este proyecto. |
dc.format.extent.es.fl_str_mv | 87 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Benelli, J. y Alberti, D. Identificador de tendencias en Redes Sociales [en línea] Tesis de grado. Montevideo : Udelar. FI. INCO, 2021. |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/33027 |
dc.language.iso.none.fl_str_mv | es spa |
dc.publisher.es.fl_str_mv | Udelar. FI. |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Inteligencia Artificial Aprendizaje Automático Aprendizaje Supervisado Procesamiento de Lenguaje Natural Clasificación Redes Sociales Tendencia |
dc.title.none.fl_str_mv | Identificador de tendencias en Redes Sociales |
dc.type.es.fl_str_mv | Tesis de grado |
dc.type.none.fl_str_mv | info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/acceptedVersion |
description | En la actualidad, millones de personas utilizan redes sociales para compartir mensajes, noticias y opiniones sobre diversos temas. Algunos de ellos se vuelven populares producto de una gran cantidad de mensajes publicados. En el caso específico Twitter, los mensajes públicos llamados tweets generan tendencias, en inglés llamadas Trending Topics. En este trabajo, para cada tendencia se intenta encontrar el tweet que generó la mayor repercusión, candidato a ser el que disparó la popularidad de la tendencia. De forma automatizada, se conecta con Twitter para obtener las tendencias de Uruguay y sus tweets asociados, utilizando scripts implementados con el lenguaje Python. Dado que la versión utilizada de la API de Twitter devuelve los tweets que nombran las tendencias de forma textual, tuvimos que dividir el problema en dos. En primer lugar, dada la masa de tweets cuyo texto contiene la expresión que es tendencia, fue necesario construir un clasificador utilizando un modelo de Regresión Logística para descartar aquellos que no son relevantes de procesar ya que no refieren la tendencia. Utilizando la técnica de Bag of Words y una medida de distancia relativa entre un tweet y una tendencia, calculada mediante la técnica word embeddings, se determina si un tweet es relevante o no. En segundo lugar, utilizando los tweets que refieren a una tendencia, se intenta encontrar cuál de ellos es su "disparador", intentando contemplar tanto su repercusión en la red, como el hecho de haberse publicado cuando la tendencia aún no surgió. Para esto, se entrena una Red Neuronal que analiza características como la cantidad de interacciones del tweet, su tiempo de vida, la cantidad de tweets que se generan en la siguiente hora de publicado, entre otras. Finalmente, a modo de poder visualizar la tarea realizada, se implementa utilizando NodeJS y React una aplicación web que permite seleccionar una tendencia previamente procesada, para ver cuál fue su disparador. Los resultados experimentales muestran que el modelo de clasificación determina si el tema de un tweet es relevante para su tendencia asociada con un 79% de accuracy, para un corpus de tweets construido durante el transcurso del proyecto. Por otra parte, el modelo de predicción del tweet disparador presenta un 81% de F1-score bajo las mismas condiciones. Comparando los resultados de cada momento respecto a sus líneas bases utilizadas, en ambos casos se puede afirmar que la solución implementada resuelve de mejor manera los problemas enfrentados en este proyecto. |
eu_rights_str_mv | openAccess |
format | bachelorThesis |
id | COLIBRI_fa980fd90436f57c5b113b7970e41467 |
identifier_str_mv | Benelli, J. y Alberti, D. Identificador de tendencias en Redes Sociales [en línea] Tesis de grado. Montevideo : Udelar. FI. INCO, 2021. |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | spa |
language_invalid_str_mv | es |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/33027 |
publishDate | 2021 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | Benelli Juan, Universidad de la República (Uruguay). Facultad de Ingeniería.Alberti Diego, Universidad de la República (Uruguay). Facultad de Ingeniería.2022-08-10T15:10:14Z2022-08-10T15:10:14Z2021Benelli, J. y Alberti, D. Identificador de tendencias en Redes Sociales [en línea] Tesis de grado. Montevideo : Udelar. FI. INCO, 2021.https://hdl.handle.net/20.500.12008/33027En la actualidad, millones de personas utilizan redes sociales para compartir mensajes, noticias y opiniones sobre diversos temas. Algunos de ellos se vuelven populares producto de una gran cantidad de mensajes publicados. En el caso específico Twitter, los mensajes públicos llamados tweets generan tendencias, en inglés llamadas Trending Topics. En este trabajo, para cada tendencia se intenta encontrar el tweet que generó la mayor repercusión, candidato a ser el que disparó la popularidad de la tendencia. De forma automatizada, se conecta con Twitter para obtener las tendencias de Uruguay y sus tweets asociados, utilizando scripts implementados con el lenguaje Python. Dado que la versión utilizada de la API de Twitter devuelve los tweets que nombran las tendencias de forma textual, tuvimos que dividir el problema en dos. En primer lugar, dada la masa de tweets cuyo texto contiene la expresión que es tendencia, fue necesario construir un clasificador utilizando un modelo de Regresión Logística para descartar aquellos que no son relevantes de procesar ya que no refieren la tendencia. Utilizando la técnica de Bag of Words y una medida de distancia relativa entre un tweet y una tendencia, calculada mediante la técnica word embeddings, se determina si un tweet es relevante o no. En segundo lugar, utilizando los tweets que refieren a una tendencia, se intenta encontrar cuál de ellos es su "disparador", intentando contemplar tanto su repercusión en la red, como el hecho de haberse publicado cuando la tendencia aún no surgió. Para esto, se entrena una Red Neuronal que analiza características como la cantidad de interacciones del tweet, su tiempo de vida, la cantidad de tweets que se generan en la siguiente hora de publicado, entre otras. Finalmente, a modo de poder visualizar la tarea realizada, se implementa utilizando NodeJS y React una aplicación web que permite seleccionar una tendencia previamente procesada, para ver cuál fue su disparador. Los resultados experimentales muestran que el modelo de clasificación determina si el tema de un tweet es relevante para su tendencia asociada con un 79% de accuracy, para un corpus de tweets construido durante el transcurso del proyecto. Por otra parte, el modelo de predicción del tweet disparador presenta un 81% de F1-score bajo las mismas condiciones. Comparando los resultados de cada momento respecto a sus líneas bases utilizadas, en ambos casos se puede afirmar que la solución implementada resuelve de mejor manera los problemas enfrentados en este proyecto.Submitted by Machado Jimena (jmachado@fing.edu.uy) on 2022-08-10T15:02:07Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) AB21.pdf: 3356430 bytes, checksum: 04e53d13eb036752aff5ecf6f341de99 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2022-08-10T15:09:22Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) AB21.pdf: 3356430 bytes, checksum: 04e53d13eb036752aff5ecf6f341de99 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2022-08-10T15:10:14Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) AB21.pdf: 3356430 bytes, checksum: 04e53d13eb036752aff5ecf6f341de99 (MD5) Previous issue date: 202187 p.application/pdfesspaUdelar. FI.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Inteligencia ArtificialAprendizaje AutomáticoAprendizaje SupervisadoProcesamiento de Lenguaje NaturalClasificaciónRedes SocialesTendenciaTwitterIdentificador de tendencias en Redes SocialesTesis de gradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaBenelli, JuanAlberti, DiegoPrada, Juan JoséEtcheverry, MathíasUniversidad de la República (Uruguay). Facultad de IngenieríaIngeniero en ComputaciónLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/33027/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/33027/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/33027/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/33027/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALAB21.pdfAB21.pdfapplication/pdf3356430http://localhost:8080/xmlui/bitstream/20.500.12008/33027/1/AB21.pdf04e53d13eb036752aff5ecf6f341de99MD5120.500.12008/330272024-04-12 14:06:40.953oai:colibri.udelar.edu.uy:20.500.12008/33027VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:46:26.023159COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Identificador de tendencias en Redes Sociales Benelli, Juan Inteligencia Artificial Aprendizaje Automático Aprendizaje Supervisado Procesamiento de Lenguaje Natural Clasificación Redes Sociales Tendencia |
status_str | acceptedVersion |
title | Identificador de tendencias en Redes Sociales |
title_full | Identificador de tendencias en Redes Sociales |
title_fullStr | Identificador de tendencias en Redes Sociales |
title_full_unstemmed | Identificador de tendencias en Redes Sociales |
title_short | Identificador de tendencias en Redes Sociales |
title_sort | Identificador de tendencias en Redes Sociales |
topic | Inteligencia Artificial Aprendizaje Automático Aprendizaje Supervisado Procesamiento de Lenguaje Natural Clasificación Redes Sociales Tendencia |
url | https://hdl.handle.net/20.500.12008/33027 |