Redes neuronales recurrentes aplicadas a sistemas de localización indoor en redes WLAN

Chumino, Valentina - Rodríguez, Richard - Stalker, Andrés

Supervisor(es): Larroca, Federico - Capdehourat, Germán

Resumen:

En los últimos años se ha disparado la cantidad de aplicaciones que aprovechan la ubicación de dispositivos móviles con distintos fines, ya sean comerciales, educativos, o de entretenimiento. La fuente más utilizada para localizar los dispositivos es el GPS (Global Positioning System), pero el mismo presenta dificultades para conseguir buena precisión dentro de entornos cerrados. Este trabajo tiene como foco estudiar el problema de localización de dispositivos móviles en interiores, en una aplicación concreta. Se continúa con lo presentado en el proyecto de grado "Localización Indoor Basada en Wi-Fi" (mayo 2019) en el que se utilizó un sistema basado en WiFi que proponía una solución efectiva para el problema en cuestión. El sistema contó con una aplicación para brindar una solución al Museo Nacional de Artes Visuales, proporcionando contenido audiovisual en función de la posición del usuario. En este proyecto se estudian e implementan alternativas a la solución previamente mencionada, buscando mejorar la precisión y estabilidad del sistema de localización a través de la utilización de Redes Neuronales Recurrentes. Se hace foco especialmente en técnicas de aprendizaje automático que se nutran de la información temporal de la trayectoria del usuario. Por otro lado, se estudian técnicas de crowdsourcing y crowdsensing que alimenten al sistema con la información alternativa recopilada activa o pasivamente por los usuarios del sistema. En particular, se implementa una solución de crowdsourcing que se encuentra adecuada al contexto de trabajo. Se realizan diversas evaluaciones dentro de un espacio cerrado disponible en Facultad de Ingeniería, UdelaR. Se elige trabajar en este lugar debido a que la situación sanitaria del país imposibilita trabajar en centros culturales como el Museo Nacional de Artes Visuales. Las evaluaciones realizadas nos llevaron a concluir que se puede alcanzar un error menor a 2 m en la localización del usuario, contando únicamente con la infraestructura WiFi ya existente en Facultad. Además, se realizan estudios comparativos entre el desempeño del sistema diseñado en el proyecto anterior y las soluciones aquí presentadas. Bajo las mismas condiciones, se logró mejorar la precisión en un 30 %.


Detalles Bibliográficos
2021
Redes neuronales recurrentes
Posicionamiento en interiores
Inteligencia artificial
Localización WiFi
Español
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/29502
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523105298448384
author Chumino, Valentina
author2 Rodríguez, Richard
Stalker, Andrés
author2_role author
author
author_facet Chumino, Valentina
Rodríguez, Richard
Stalker, Andrés
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
36c32e9c6da50e6d55578c16944ef7f6
1996b8461bc290aef6a27d78c67b6b52
87f7d021eac577e99f541edbc7565aa5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/29502/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/29502/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/29502/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/29502/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/29502/1/CRS21.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Chumino Valentina, Universidad de la República (Uruguay). Facultad de Ingeniería.
Rodríguez Richard, Universidad de la República (Uruguay). Facultad de Ingeniería.
Stalker Andrés, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creator.advisor.none.fl_str_mv Larroca, Federico
Capdehourat, Germán
dc.creator.none.fl_str_mv Chumino, Valentina
Rodríguez, Richard
Stalker, Andrés
dc.date.accessioned.none.fl_str_mv 2021-09-17T12:56:54Z
dc.date.available.none.fl_str_mv 2021-09-17T12:56:54Z
dc.date.issued.none.fl_str_mv 2021
dc.description.abstract.none.fl_txt_mv En los últimos años se ha disparado la cantidad de aplicaciones que aprovechan la ubicación de dispositivos móviles con distintos fines, ya sean comerciales, educativos, o de entretenimiento. La fuente más utilizada para localizar los dispositivos es el GPS (Global Positioning System), pero el mismo presenta dificultades para conseguir buena precisión dentro de entornos cerrados. Este trabajo tiene como foco estudiar el problema de localización de dispositivos móviles en interiores, en una aplicación concreta. Se continúa con lo presentado en el proyecto de grado "Localización Indoor Basada en Wi-Fi" (mayo 2019) en el que se utilizó un sistema basado en WiFi que proponía una solución efectiva para el problema en cuestión. El sistema contó con una aplicación para brindar una solución al Museo Nacional de Artes Visuales, proporcionando contenido audiovisual en función de la posición del usuario. En este proyecto se estudian e implementan alternativas a la solución previamente mencionada, buscando mejorar la precisión y estabilidad del sistema de localización a través de la utilización de Redes Neuronales Recurrentes. Se hace foco especialmente en técnicas de aprendizaje automático que se nutran de la información temporal de la trayectoria del usuario. Por otro lado, se estudian técnicas de crowdsourcing y crowdsensing que alimenten al sistema con la información alternativa recopilada activa o pasivamente por los usuarios del sistema. En particular, se implementa una solución de crowdsourcing que se encuentra adecuada al contexto de trabajo. Se realizan diversas evaluaciones dentro de un espacio cerrado disponible en Facultad de Ingeniería, UdelaR. Se elige trabajar en este lugar debido a que la situación sanitaria del país imposibilita trabajar en centros culturales como el Museo Nacional de Artes Visuales. Las evaluaciones realizadas nos llevaron a concluir que se puede alcanzar un error menor a 2 m en la localización del usuario, contando únicamente con la infraestructura WiFi ya existente en Facultad. Además, se realizan estudios comparativos entre el desempeño del sistema diseñado en el proyecto anterior y las soluciones aquí presentadas. Bajo las mismas condiciones, se logró mejorar la precisión en un 30 %.
dc.format.extent.es.fl_str_mv 82 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Chumino, V., Rodríguez, R. y Stalker, A. Redes neuronales recurrentes aplicadas a sistemas de localización indoor en redes WLAN [en línea]. Tesis de grado. Montevideo : Udelar. FI. IIE, 2021.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/29502
dc.language.iso.none.fl_str_mv es
spa
dc.publisher.es.fl_str_mv Udelar.FI.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Redes neuronales recurrentes
Posicionamiento en interiores
Inteligencia artificial
Localización WiFi
dc.title.none.fl_str_mv Redes neuronales recurrentes aplicadas a sistemas de localización indoor en redes WLAN
dc.type.es.fl_str_mv Tesis de grado
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description En los últimos años se ha disparado la cantidad de aplicaciones que aprovechan la ubicación de dispositivos móviles con distintos fines, ya sean comerciales, educativos, o de entretenimiento. La fuente más utilizada para localizar los dispositivos es el GPS (Global Positioning System), pero el mismo presenta dificultades para conseguir buena precisión dentro de entornos cerrados. Este trabajo tiene como foco estudiar el problema de localización de dispositivos móviles en interiores, en una aplicación concreta. Se continúa con lo presentado en el proyecto de grado "Localización Indoor Basada en Wi-Fi" (mayo 2019) en el que se utilizó un sistema basado en WiFi que proponía una solución efectiva para el problema en cuestión. El sistema contó con una aplicación para brindar una solución al Museo Nacional de Artes Visuales, proporcionando contenido audiovisual en función de la posición del usuario. En este proyecto se estudian e implementan alternativas a la solución previamente mencionada, buscando mejorar la precisión y estabilidad del sistema de localización a través de la utilización de Redes Neuronales Recurrentes. Se hace foco especialmente en técnicas de aprendizaje automático que se nutran de la información temporal de la trayectoria del usuario. Por otro lado, se estudian técnicas de crowdsourcing y crowdsensing que alimenten al sistema con la información alternativa recopilada activa o pasivamente por los usuarios del sistema. En particular, se implementa una solución de crowdsourcing que se encuentra adecuada al contexto de trabajo. Se realizan diversas evaluaciones dentro de un espacio cerrado disponible en Facultad de Ingeniería, UdelaR. Se elige trabajar en este lugar debido a que la situación sanitaria del país imposibilita trabajar en centros culturales como el Museo Nacional de Artes Visuales. Las evaluaciones realizadas nos llevaron a concluir que se puede alcanzar un error menor a 2 m en la localización del usuario, contando únicamente con la infraestructura WiFi ya existente en Facultad. Además, se realizan estudios comparativos entre el desempeño del sistema diseñado en el proyecto anterior y las soluciones aquí presentadas. Bajo las mismas condiciones, se logró mejorar la precisión en un 30 %.
eu_rights_str_mv openAccess
format bachelorThesis
id COLIBRI_f8ccb582a021fd61ff195b31d827cb1b
identifier_str_mv Chumino, V., Rodríguez, R. y Stalker, A. Redes neuronales recurrentes aplicadas a sistemas de localización indoor en redes WLAN [en línea]. Tesis de grado. Montevideo : Udelar. FI. IIE, 2021.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/29502
publishDate 2021
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Chumino Valentina, Universidad de la República (Uruguay). Facultad de Ingeniería.Rodríguez Richard, Universidad de la República (Uruguay). Facultad de Ingeniería.Stalker Andrés, Universidad de la República (Uruguay). Facultad de Ingeniería.2021-09-17T12:56:54Z2021-09-17T12:56:54Z2021Chumino, V., Rodríguez, R. y Stalker, A. Redes neuronales recurrentes aplicadas a sistemas de localización indoor en redes WLAN [en línea]. Tesis de grado. Montevideo : Udelar. FI. IIE, 2021.https://hdl.handle.net/20.500.12008/29502En los últimos años se ha disparado la cantidad de aplicaciones que aprovechan la ubicación de dispositivos móviles con distintos fines, ya sean comerciales, educativos, o de entretenimiento. La fuente más utilizada para localizar los dispositivos es el GPS (Global Positioning System), pero el mismo presenta dificultades para conseguir buena precisión dentro de entornos cerrados. Este trabajo tiene como foco estudiar el problema de localización de dispositivos móviles en interiores, en una aplicación concreta. Se continúa con lo presentado en el proyecto de grado "Localización Indoor Basada en Wi-Fi" (mayo 2019) en el que se utilizó un sistema basado en WiFi que proponía una solución efectiva para el problema en cuestión. El sistema contó con una aplicación para brindar una solución al Museo Nacional de Artes Visuales, proporcionando contenido audiovisual en función de la posición del usuario. En este proyecto se estudian e implementan alternativas a la solución previamente mencionada, buscando mejorar la precisión y estabilidad del sistema de localización a través de la utilización de Redes Neuronales Recurrentes. Se hace foco especialmente en técnicas de aprendizaje automático que se nutran de la información temporal de la trayectoria del usuario. Por otro lado, se estudian técnicas de crowdsourcing y crowdsensing que alimenten al sistema con la información alternativa recopilada activa o pasivamente por los usuarios del sistema. En particular, se implementa una solución de crowdsourcing que se encuentra adecuada al contexto de trabajo. Se realizan diversas evaluaciones dentro de un espacio cerrado disponible en Facultad de Ingeniería, UdelaR. Se elige trabajar en este lugar debido a que la situación sanitaria del país imposibilita trabajar en centros culturales como el Museo Nacional de Artes Visuales. Las evaluaciones realizadas nos llevaron a concluir que se puede alcanzar un error menor a 2 m en la localización del usuario, contando únicamente con la infraestructura WiFi ya existente en Facultad. Además, se realizan estudios comparativos entre el desempeño del sistema diseñado en el proyecto anterior y las soluciones aquí presentadas. Bajo las mismas condiciones, se logró mejorar la precisión en un 30 %.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2021-09-14T21:41:17Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) CRS21.pdf: 4110672 bytes, checksum: 87f7d021eac577e99f541edbc7565aa5 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2021-09-16T18:49:58Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) CRS21.pdf: 4110672 bytes, checksum: 87f7d021eac577e99f541edbc7565aa5 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2021-09-17T12:56:54Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) CRS21.pdf: 4110672 bytes, checksum: 87f7d021eac577e99f541edbc7565aa5 (MD5) Previous issue date: 202182 p.application/pdfesspaUdelar.FI.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Redes neuronales recurrentesPosicionamiento en interioresInteligencia artificialLocalización WiFiRedes neuronales recurrentes aplicadas a sistemas de localización indoor en redes WLANTesis de gradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaChumino, ValentinaRodríguez, RichardStalker, AndrésLarroca, FedericoCapdehourat, GermánUniversidad de la República (Uruguay). Facultad de Ingeniería.Ingeniero ElectricistaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/29502/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/29502/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/29502/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/29502/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALCRS21.pdfCRS21.pdfapplication/pdf4110672http://localhost:8080/xmlui/bitstream/20.500.12008/29502/1/CRS21.pdf87f7d021eac577e99f541edbc7565aa5MD5120.500.12008/295022024-04-12 14:05:07.036oai:colibri.udelar.edu.uy:20.500.12008/29502VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:40:52.959550COLIBRI - Universidad de la Repúblicafalse
spellingShingle Redes neuronales recurrentes aplicadas a sistemas de localización indoor en redes WLAN
Chumino, Valentina
Redes neuronales recurrentes
Posicionamiento en interiores
Inteligencia artificial
Localización WiFi
status_str acceptedVersion
title Redes neuronales recurrentes aplicadas a sistemas de localización indoor en redes WLAN
title_full Redes neuronales recurrentes aplicadas a sistemas de localización indoor en redes WLAN
title_fullStr Redes neuronales recurrentes aplicadas a sistemas de localización indoor en redes WLAN
title_full_unstemmed Redes neuronales recurrentes aplicadas a sistemas de localización indoor en redes WLAN
title_short Redes neuronales recurrentes aplicadas a sistemas de localización indoor en redes WLAN
title_sort Redes neuronales recurrentes aplicadas a sistemas de localización indoor en redes WLAN
topic Redes neuronales recurrentes
Posicionamiento en interiores
Inteligencia artificial
Localización WiFi
url https://hdl.handle.net/20.500.12008/29502