Mining multivariate time-series for anomaly detection in mobile networks on the usage of variational auto encoders and dilated convolutions

García González, Gastón - Martínez Tagliafico, Sergio - Fernández, Alicia - Gómez, Gabriel - Acuña, José - Mariño, Camilo - Casas, Pedro

Resumen:

The automatic detection of anomalies in communication networks plays a central role in network management. Despite the many attempts and approaches for anomaly detection explored in the past, the detection of rare events in multidimensional network data streams still represents a complex to tackle problem. Network monitoring data generally consists of hundreds of counters periodically collected in the form of time-series, resulting in a complex-toanalyze multivariate time-series (MTS) process. Traditional timeseries anomaly detection methods target univariate time-series analysis, which makes the multivariate analysis cumbersome and prohibitively complex when dealing with MTS data. In this paper we introduce DC-VAE, a novel approach to anomaly detection in MTS data, leveraging convolutional neural networks (CNNs) and variational auto encoders (VAEs). DC-VAE detects anomalies in MTS data through a single model, exploiting temporal information without sacrificing computational and memory resources. In particular, instead of using recursive neural networks, large causal filters, or many layers, DC-VAE relies on Dilated Convolutions (DC) to capture long and short term phenomena in the data, avoiding complex and less-efficient deep architectures, thus simplifying learning. We evaluate DC-VAE on the detection of anomalies in the TELCO dataset, a large-scale, multi-dimensional network monitoring dataset collected at an operational mobile Internet Service Provider (ISP), where anomalous events were manually labeled by experts during a time span of seven-months, at a five-minutes granularity. Results show the main properties and advantages introduced by VAEs for time-series anomaly detection, as well as the out-performance of DC-VAE as compared to standard VAEs for time-series modeling. We also evaluate DC-VAE in open, publicly available datasets, comparing its performance against other multivariate anomaly detectors based on deep learning generative models. For the sake of reproducibility and as an additional contribution, we make the TELCO dataset publicly available to the community, and openly release the code implementing DC-VAE.


Detalles Bibliográficos
2022
Este trabajo se encuentra parcialmente financiado por el proyecto austriaco FFG ICTof-the-Future project DynAISEC - Adaptive AI/ML for Dynamic Cybersecurity Systems, por el proyecto ANII-FMV con referencia FMV1-2019-1-155850 Anomaly Detection with Continual and Streaming Machine Learning on Big Data Telecommunications Networks y por Telefónica.
Gastón García fue apoyado por la beca ANII POS-FMV-2020-1-1009239 y por CSIC, en el marco del programa Movilidad e Intercambios Académicos 2022.
Anomaly Detection
Deep Learning
Multivariate Time-Series
Dilated Convolution
VAE
Reproducibility
New Datasets
Inglés
Universidad de la República
COLIBRI
https://kdd-milets.github.io/milets2022/
https://kdd-milets.github.io/milets2022/#papers
https://hdl.handle.net/20.500.12008/35836
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807522899665354752
author García González, Gastón
author2 Martínez Tagliafico, Sergio
Fernández, Alicia
Gómez, Gabriel
Acuña, José
Mariño, Camilo
Casas, Pedro
author2_role author
author
author
author
author
author
author_facet García González, Gastón
Martínez Tagliafico, Sergio
Fernández, Alicia
Gómez, Gabriel
Acuña, José
Mariño, Camilo
Casas, Pedro
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
36c32e9c6da50e6d55578c16944ef7f6
1996b8461bc290aef6a27d78c67b6b52
c4e76b89b4c17ee131e2cb3796219f2a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/35836/10/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/35836/7/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/35836/8/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/35836/9/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/35836/6/GMFGAMC22.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv García González Gastón, Universidad de la República (Uruguay). Facultad de Ingeniería.
Martínez Tagliafico Sergio, Universidad de la República (Uruguay). Facultad de Ingeniería.
Fernández Alicia, Universidad de la República (Uruguay). Facultad de Ingeniería.
Gómez Gabriel, Universidad de la República (Uruguay). Facultad de Ingeniería.
Acuña José, Universidad de la República (Uruguay). Facultad de Ingeniería.
Mariño Camilo, Universidad de la República (Uruguay). Facultad de Ingeniería.
Casas Pedro, AIT Austrian Institute of Technology
dc.creator.none.fl_str_mv García González, Gastón
Martínez Tagliafico, Sergio
Fernández, Alicia
Gómez, Gabriel
Acuña, José
Mariño, Camilo
Casas, Pedro
dc.date.accessioned.none.fl_str_mv 2023-02-09T18:06:37Z
dc.date.available.none.fl_str_mv 2023-02-09T18:06:37Z
dc.date.issued.none.fl_str_mv 2022
dc.description.abstract.none.fl_txt_mv The automatic detection of anomalies in communication networks plays a central role in network management. Despite the many attempts and approaches for anomaly detection explored in the past, the detection of rare events in multidimensional network data streams still represents a complex to tackle problem. Network monitoring data generally consists of hundreds of counters periodically collected in the form of time-series, resulting in a complex-toanalyze multivariate time-series (MTS) process. Traditional timeseries anomaly detection methods target univariate time-series analysis, which makes the multivariate analysis cumbersome and prohibitively complex when dealing with MTS data. In this paper we introduce DC-VAE, a novel approach to anomaly detection in MTS data, leveraging convolutional neural networks (CNNs) and variational auto encoders (VAEs). DC-VAE detects anomalies in MTS data through a single model, exploiting temporal information without sacrificing computational and memory resources. In particular, instead of using recursive neural networks, large causal filters, or many layers, DC-VAE relies on Dilated Convolutions (DC) to capture long and short term phenomena in the data, avoiding complex and less-efficient deep architectures, thus simplifying learning. We evaluate DC-VAE on the detection of anomalies in the TELCO dataset, a large-scale, multi-dimensional network monitoring dataset collected at an operational mobile Internet Service Provider (ISP), where anomalous events were manually labeled by experts during a time span of seven-months, at a five-minutes granularity. Results show the main properties and advantages introduced by VAEs for time-series anomaly detection, as well as the out-performance of DC-VAE as compared to standard VAEs for time-series modeling. We also evaluate DC-VAE in open, publicly available datasets, comparing its performance against other multivariate anomaly detectors based on deep learning generative models. For the sake of reproducibility and as an additional contribution, we make the TELCO dataset publicly available to the community, and openly release the code implementing DC-VAE.
dc.description.es.fl_txt_mv Transferencia tecnológica. Grupo de investigación Detección de anomalías en series de tiempo, Facultad de Ingeniería. Instituto de Ingeniería Eléctrica
dc.description.sponsorship.none.fl_txt_mv Este trabajo se encuentra parcialmente financiado por el proyecto austriaco FFG ICTof-the-Future project DynAISEC - Adaptive AI/ML for Dynamic Cybersecurity Systems, por el proyecto ANII-FMV con referencia FMV1-2019-1-155850 Anomaly Detection with Continual and Streaming Machine Learning on Big Data Telecommunications Networks y por Telefónica.
Gastón García fue apoyado por la beca ANII POS-FMV-2020-1-1009239 y por CSIC, en el marco del programa Movilidad e Intercambios Académicos 2022.
dc.format.extent.es.fl_str_mv 7 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv García González, G., Martínez Tagliafico, S., Fernández, A. y otros. Mining multivariate time-series for anomaly detection in mobile networks on the usage of variational auto encoders and dilated convolutions [en línea]. EN: 8th SIGKDD International Workshop on Mining and Learning from Time Series -- Deep Forecasting : Models, Interpretability, and Applications, Washington, DC, USA, aug. 15, 2022, pp. 1-7.
dc.identifier.uri.none.fl_str_mv https://kdd-milets.github.io/milets2022/
https://kdd-milets.github.io/milets2022/#papers
https://hdl.handle.net/20.500.12008/35836
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv ACM
dc.relation.ispartof.es.fl_str_mv 8th SIGKDD International Workshop on Mining and Learning from Time Series -- Deep Forecasting : Models, Interpretability, and Applications, Washington, DC, USA, aug. 15 2022, pp. 1-7.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Anomaly Detection
Deep Learning
Multivariate Time-Series
Dilated Convolution
VAE
Reproducibility
New Datasets
dc.title.none.fl_str_mv Mining multivariate time-series for anomaly detection in mobile networks on the usage of variational auto encoders and dilated convolutions
dc.type.es.fl_str_mv Ponencia
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description Transferencia tecnológica. Grupo de investigación Detección de anomalías en series de tiempo, Facultad de Ingeniería. Instituto de Ingeniería Eléctrica
eu_rights_str_mv openAccess
format conferenceObject
id COLIBRI_f8169a3a73af407aa6ac4d4f32a1436b
identifier_str_mv García González, G., Martínez Tagliafico, S., Fernández, A. y otros. Mining multivariate time-series for anomaly detection in mobile networks on the usage of variational auto encoders and dilated convolutions [en línea]. EN: 8th SIGKDD International Workshop on Mining and Learning from Time Series -- Deep Forecasting : Models, Interpretability, and Applications, Washington, DC, USA, aug. 15, 2022, pp. 1-7.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/35836
publishDate 2022
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling García González Gastón, Universidad de la República (Uruguay). Facultad de Ingeniería.Martínez Tagliafico Sergio, Universidad de la República (Uruguay). Facultad de Ingeniería.Fernández Alicia, Universidad de la República (Uruguay). Facultad de Ingeniería.Gómez Gabriel, Universidad de la República (Uruguay). Facultad de Ingeniería.Acuña José, Universidad de la República (Uruguay). Facultad de Ingeniería.Mariño Camilo, Universidad de la República (Uruguay). Facultad de Ingeniería.Casas Pedro, AIT Austrian Institute of Technology2023-02-09T18:06:37Z2023-02-09T18:06:37Z2022García González, G., Martínez Tagliafico, S., Fernández, A. y otros. Mining multivariate time-series for anomaly detection in mobile networks on the usage of variational auto encoders and dilated convolutions [en línea]. EN: 8th SIGKDD International Workshop on Mining and Learning from Time Series -- Deep Forecasting : Models, Interpretability, and Applications, Washington, DC, USA, aug. 15, 2022, pp. 1-7.https://kdd-milets.github.io/milets2022/https://kdd-milets.github.io/milets2022/#papershttps://hdl.handle.net/20.500.12008/35836Transferencia tecnológica. Grupo de investigación Detección de anomalías en series de tiempo, Facultad de Ingeniería. Instituto de Ingeniería EléctricaThe automatic detection of anomalies in communication networks plays a central role in network management. Despite the many attempts and approaches for anomaly detection explored in the past, the detection of rare events in multidimensional network data streams still represents a complex to tackle problem. Network monitoring data generally consists of hundreds of counters periodically collected in the form of time-series, resulting in a complex-toanalyze multivariate time-series (MTS) process. Traditional timeseries anomaly detection methods target univariate time-series analysis, which makes the multivariate analysis cumbersome and prohibitively complex when dealing with MTS data. In this paper we introduce DC-VAE, a novel approach to anomaly detection in MTS data, leveraging convolutional neural networks (CNNs) and variational auto encoders (VAEs). DC-VAE detects anomalies in MTS data through a single model, exploiting temporal information without sacrificing computational and memory resources. In particular, instead of using recursive neural networks, large causal filters, or many layers, DC-VAE relies on Dilated Convolutions (DC) to capture long and short term phenomena in the data, avoiding complex and less-efficient deep architectures, thus simplifying learning. We evaluate DC-VAE on the detection of anomalies in the TELCO dataset, a large-scale, multi-dimensional network monitoring dataset collected at an operational mobile Internet Service Provider (ISP), where anomalous events were manually labeled by experts during a time span of seven-months, at a five-minutes granularity. Results show the main properties and advantages introduced by VAEs for time-series anomaly detection, as well as the out-performance of DC-VAE as compared to standard VAEs for time-series modeling. We also evaluate DC-VAE in open, publicly available datasets, comparing its performance against other multivariate anomaly detectors based on deep learning generative models. For the sake of reproducibility and as an additional contribution, we make the TELCO dataset publicly available to the community, and openly release the code implementing DC-VAE.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2023-02-08T15:50:18Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) GMFGAC22a.pdf: 4397929 bytes, checksum: c4e76b89b4c17ee131e2cb3796219f2a (MD5)Rejected by Machado Jimena (jmachado@fing.edu.uy), reason: para corrección on 2023-02-09T17:58:20Z (GMT)Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2023-02-09T18:00:40Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) GMFGAMC22.pdf: 4397929 bytes, checksum: c4e76b89b4c17ee131e2cb3796219f2a (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2023-02-09T18:02:10Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) GMFGAMC22.pdf: 4397929 bytes, checksum: c4e76b89b4c17ee131e2cb3796219f2a (MD5)Made available in DSpace by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2023-02-09T18:06:37Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) GMFGAMC22.pdf: 4397929 bytes, checksum: c4e76b89b4c17ee131e2cb3796219f2a (MD5) Previous issue date: 2022Este trabajo se encuentra parcialmente financiado por el proyecto austriaco FFG ICTof-the-Future project DynAISEC - Adaptive AI/ML for Dynamic Cybersecurity Systems, por el proyecto ANII-FMV con referencia FMV1-2019-1-155850 Anomaly Detection with Continual and Streaming Machine Learning on Big Data Telecommunications Networks y por Telefónica.Gastón García fue apoyado por la beca ANII POS-FMV-2020-1-1009239 y por CSIC, en el marco del programa Movilidad e Intercambios Académicos 2022.7 p.application/pdfenengACM8th SIGKDD International Workshop on Mining and Learning from Time Series -- Deep Forecasting : Models, Interpretability, and Applications, Washington, DC, USA, aug. 15 2022, pp. 1-7.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Anomaly DetectionDeep LearningMultivariate Time-SeriesDilated ConvolutionVAEReproducibilityNew DatasetsMining multivariate time-series for anomaly detection in mobile networks on the usage of variational auto encoders and dilated convolutionsPonenciainfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaGarcía González, GastónMartínez Tagliafico, SergioFernández, AliciaGómez, GabrielAcuña, JoséMariño, CamiloCasas, PedroProcesamiento de SeñalesProcesamiento de SeñalesTelecomunicacionesTelecomunicacionesAnálisis de Redes, Tráfico y Estadísticas de ServiciosTratamiento de ImágenesAnálisis de Redes, Tráfico y Estadísticas de ServiciosTratamiento de ImágenesLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/35836/10/license.txt6429389a7df7277b72b7924fdc7d47a9MD510CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/35836/7/license_urla006180e3f5b2ad0b88185d14284c0e0MD57license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/35836/8/license_text36c32e9c6da50e6d55578c16944ef7f6MD58license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/35836/9/license_rdf1996b8461bc290aef6a27d78c67b6b52MD59ORIGINALGMFGAMC22.pdfGMFGAMC22.pdfapplication/pdf4397929http://localhost:8080/xmlui/bitstream/20.500.12008/35836/6/GMFGAMC22.pdfc4e76b89b4c17ee131e2cb3796219f2aMD5620.500.12008/358362024-07-24 17:25:46.7oai:colibri.udelar.edu.uy:20.500.12008/35836VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:19.022111COLIBRI - Universidad de la Repúblicafalse
spellingShingle Mining multivariate time-series for anomaly detection in mobile networks on the usage of variational auto encoders and dilated convolutions
García González, Gastón
Anomaly Detection
Deep Learning
Multivariate Time-Series
Dilated Convolution
VAE
Reproducibility
New Datasets
status_str publishedVersion
title Mining multivariate time-series for anomaly detection in mobile networks on the usage of variational auto encoders and dilated convolutions
title_full Mining multivariate time-series for anomaly detection in mobile networks on the usage of variational auto encoders and dilated convolutions
title_fullStr Mining multivariate time-series for anomaly detection in mobile networks on the usage of variational auto encoders and dilated convolutions
title_full_unstemmed Mining multivariate time-series for anomaly detection in mobile networks on the usage of variational auto encoders and dilated convolutions
title_short Mining multivariate time-series for anomaly detection in mobile networks on the usage of variational auto encoders and dilated convolutions
title_sort Mining multivariate time-series for anomaly detection in mobile networks on the usage of variational auto encoders and dilated convolutions
topic Anomaly Detection
Deep Learning
Multivariate Time-Series
Dilated Convolution
VAE
Reproducibility
New Datasets
url https://kdd-milets.github.io/milets2022/
https://kdd-milets.github.io/milets2022/#papers
https://hdl.handle.net/20.500.12008/35836