Mining multivariate time-series for anomaly detection in mobile networks on the usage of variational auto encoders and dilated convolutions
Resumen:
The automatic detection of anomalies in communication networks plays a central role in network management. Despite the many attempts and approaches for anomaly detection explored in the past, the detection of rare events in multidimensional network data streams still represents a complex to tackle problem. Network monitoring data generally consists of hundreds of counters periodically collected in the form of time-series, resulting in a complex-toanalyze multivariate time-series (MTS) process. Traditional timeseries anomaly detection methods target univariate time-series analysis, which makes the multivariate analysis cumbersome and prohibitively complex when dealing with MTS data. In this paper we introduce DC-VAE, a novel approach to anomaly detection in MTS data, leveraging convolutional neural networks (CNNs) and variational auto encoders (VAEs). DC-VAE detects anomalies in MTS data through a single model, exploiting temporal information without sacrificing computational and memory resources. In particular, instead of using recursive neural networks, large causal filters, or many layers, DC-VAE relies on Dilated Convolutions (DC) to capture long and short term phenomena in the data, avoiding complex and less-efficient deep architectures, thus simplifying learning. We evaluate DC-VAE on the detection of anomalies in the TELCO dataset, a large-scale, multi-dimensional network monitoring dataset collected at an operational mobile Internet Service Provider (ISP), where anomalous events were manually labeled by experts during a time span of seven-months, at a five-minutes granularity. Results show the main properties and advantages introduced by VAEs for time-series anomaly detection, as well as the out-performance of DC-VAE as compared to standard VAEs for time-series modeling. We also evaluate DC-VAE in open, publicly available datasets, comparing its performance against other multivariate anomaly detectors based on deep learning generative models. For the sake of reproducibility and as an additional contribution, we make the TELCO dataset publicly available to the community, and openly release the code implementing DC-VAE.
2022 | |
Este trabajo se encuentra parcialmente financiado por el proyecto austriaco FFG ICTof-the-Future project DynAISEC - Adaptive AI/ML for Dynamic Cybersecurity Systems, por el proyecto ANII-FMV con referencia FMV1-2019-1-155850 Anomaly Detection with Continual and Streaming Machine Learning on Big Data Telecommunications Networks y por Telefónica. Gastón García fue apoyado por la beca ANII POS-FMV-2020-1-1009239 y por CSIC, en el marco del programa Movilidad e Intercambios Académicos 2022. |
|
Anomaly Detection Deep Learning Multivariate Time-Series Dilated Convolution VAE Reproducibility New Datasets |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://kdd-milets.github.io/milets2022/
https://kdd-milets.github.io/milets2022/#papers https://hdl.handle.net/20.500.12008/35836 |
|
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807522899665354752 |
---|---|
author | García González, Gastón |
author2 | Martínez Tagliafico, Sergio Fernández, Alicia Gómez, Gabriel Acuña, José Mariño, Camilo Casas, Pedro |
author2_role | author author author author author author |
author_facet | García González, Gastón Martínez Tagliafico, Sergio Fernández, Alicia Gómez, Gabriel Acuña, José Mariño, Camilo Casas, Pedro |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a006180e3f5b2ad0b88185d14284c0e0 36c32e9c6da50e6d55578c16944ef7f6 1996b8461bc290aef6a27d78c67b6b52 c4e76b89b4c17ee131e2cb3796219f2a |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/35836/10/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/35836/7/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/35836/8/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/35836/9/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/35836/6/GMFGAMC22.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | García González Gastón, Universidad de la República (Uruguay). Facultad de Ingeniería. Martínez Tagliafico Sergio, Universidad de la República (Uruguay). Facultad de Ingeniería. Fernández Alicia, Universidad de la República (Uruguay). Facultad de Ingeniería. Gómez Gabriel, Universidad de la República (Uruguay). Facultad de Ingeniería. Acuña José, Universidad de la República (Uruguay). Facultad de Ingeniería. Mariño Camilo, Universidad de la República (Uruguay). Facultad de Ingeniería. Casas Pedro, AIT Austrian Institute of Technology |
dc.creator.none.fl_str_mv | García González, Gastón Martínez Tagliafico, Sergio Fernández, Alicia Gómez, Gabriel Acuña, José Mariño, Camilo Casas, Pedro |
dc.date.accessioned.none.fl_str_mv | 2023-02-09T18:06:37Z |
dc.date.available.none.fl_str_mv | 2023-02-09T18:06:37Z |
dc.date.issued.none.fl_str_mv | 2022 |
dc.description.abstract.none.fl_txt_mv | The automatic detection of anomalies in communication networks plays a central role in network management. Despite the many attempts and approaches for anomaly detection explored in the past, the detection of rare events in multidimensional network data streams still represents a complex to tackle problem. Network monitoring data generally consists of hundreds of counters periodically collected in the form of time-series, resulting in a complex-toanalyze multivariate time-series (MTS) process. Traditional timeseries anomaly detection methods target univariate time-series analysis, which makes the multivariate analysis cumbersome and prohibitively complex when dealing with MTS data. In this paper we introduce DC-VAE, a novel approach to anomaly detection in MTS data, leveraging convolutional neural networks (CNNs) and variational auto encoders (VAEs). DC-VAE detects anomalies in MTS data through a single model, exploiting temporal information without sacrificing computational and memory resources. In particular, instead of using recursive neural networks, large causal filters, or many layers, DC-VAE relies on Dilated Convolutions (DC) to capture long and short term phenomena in the data, avoiding complex and less-efficient deep architectures, thus simplifying learning. We evaluate DC-VAE on the detection of anomalies in the TELCO dataset, a large-scale, multi-dimensional network monitoring dataset collected at an operational mobile Internet Service Provider (ISP), where anomalous events were manually labeled by experts during a time span of seven-months, at a five-minutes granularity. Results show the main properties and advantages introduced by VAEs for time-series anomaly detection, as well as the out-performance of DC-VAE as compared to standard VAEs for time-series modeling. We also evaluate DC-VAE in open, publicly available datasets, comparing its performance against other multivariate anomaly detectors based on deep learning generative models. For the sake of reproducibility and as an additional contribution, we make the TELCO dataset publicly available to the community, and openly release the code implementing DC-VAE. |
dc.description.es.fl_txt_mv | Transferencia tecnológica. Grupo de investigación Detección de anomalías en series de tiempo, Facultad de Ingeniería. Instituto de Ingeniería Eléctrica |
dc.description.sponsorship.none.fl_txt_mv | Este trabajo se encuentra parcialmente financiado por el proyecto austriaco FFG ICTof-the-Future project DynAISEC - Adaptive AI/ML for Dynamic Cybersecurity Systems, por el proyecto ANII-FMV con referencia FMV1-2019-1-155850 Anomaly Detection with Continual and Streaming Machine Learning on Big Data Telecommunications Networks y por Telefónica. Gastón García fue apoyado por la beca ANII POS-FMV-2020-1-1009239 y por CSIC, en el marco del programa Movilidad e Intercambios Académicos 2022. |
dc.format.extent.es.fl_str_mv | 7 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | García González, G., Martínez Tagliafico, S., Fernández, A. y otros. Mining multivariate time-series for anomaly detection in mobile networks on the usage of variational auto encoders and dilated convolutions [en línea]. EN: 8th SIGKDD International Workshop on Mining and Learning from Time Series -- Deep Forecasting : Models, Interpretability, and Applications, Washington, DC, USA, aug. 15, 2022, pp. 1-7. |
dc.identifier.uri.none.fl_str_mv | https://kdd-milets.github.io/milets2022/ https://kdd-milets.github.io/milets2022/#papers https://hdl.handle.net/20.500.12008/35836 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | ACM |
dc.relation.ispartof.es.fl_str_mv | 8th SIGKDD International Workshop on Mining and Learning from Time Series -- Deep Forecasting : Models, Interpretability, and Applications, Washington, DC, USA, aug. 15 2022, pp. 1-7. |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Anomaly Detection Deep Learning Multivariate Time-Series Dilated Convolution VAE Reproducibility New Datasets |
dc.title.none.fl_str_mv | Mining multivariate time-series for anomaly detection in mobile networks on the usage of variational auto encoders and dilated convolutions |
dc.type.es.fl_str_mv | Ponencia |
dc.type.none.fl_str_mv | info:eu-repo/semantics/conferenceObject |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | Transferencia tecnológica. Grupo de investigación Detección de anomalías en series de tiempo, Facultad de Ingeniería. Instituto de Ingeniería Eléctrica |
eu_rights_str_mv | openAccess |
format | conferenceObject |
id | COLIBRI_f8169a3a73af407aa6ac4d4f32a1436b |
identifier_str_mv | García González, G., Martínez Tagliafico, S., Fernández, A. y otros. Mining multivariate time-series for anomaly detection in mobile networks on the usage of variational auto encoders and dilated convolutions [en línea]. EN: 8th SIGKDD International Workshop on Mining and Learning from Time Series -- Deep Forecasting : Models, Interpretability, and Applications, Washington, DC, USA, aug. 15, 2022, pp. 1-7. |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/35836 |
publishDate | 2022 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | García González Gastón, Universidad de la República (Uruguay). Facultad de Ingeniería.Martínez Tagliafico Sergio, Universidad de la República (Uruguay). Facultad de Ingeniería.Fernández Alicia, Universidad de la República (Uruguay). Facultad de Ingeniería.Gómez Gabriel, Universidad de la República (Uruguay). Facultad de Ingeniería.Acuña José, Universidad de la República (Uruguay). Facultad de Ingeniería.Mariño Camilo, Universidad de la República (Uruguay). Facultad de Ingeniería.Casas Pedro, AIT Austrian Institute of Technology2023-02-09T18:06:37Z2023-02-09T18:06:37Z2022García González, G., Martínez Tagliafico, S., Fernández, A. y otros. Mining multivariate time-series for anomaly detection in mobile networks on the usage of variational auto encoders and dilated convolutions [en línea]. EN: 8th SIGKDD International Workshop on Mining and Learning from Time Series -- Deep Forecasting : Models, Interpretability, and Applications, Washington, DC, USA, aug. 15, 2022, pp. 1-7.https://kdd-milets.github.io/milets2022/https://kdd-milets.github.io/milets2022/#papershttps://hdl.handle.net/20.500.12008/35836Transferencia tecnológica. Grupo de investigación Detección de anomalías en series de tiempo, Facultad de Ingeniería. Instituto de Ingeniería EléctricaThe automatic detection of anomalies in communication networks plays a central role in network management. Despite the many attempts and approaches for anomaly detection explored in the past, the detection of rare events in multidimensional network data streams still represents a complex to tackle problem. Network monitoring data generally consists of hundreds of counters periodically collected in the form of time-series, resulting in a complex-toanalyze multivariate time-series (MTS) process. Traditional timeseries anomaly detection methods target univariate time-series analysis, which makes the multivariate analysis cumbersome and prohibitively complex when dealing with MTS data. In this paper we introduce DC-VAE, a novel approach to anomaly detection in MTS data, leveraging convolutional neural networks (CNNs) and variational auto encoders (VAEs). DC-VAE detects anomalies in MTS data through a single model, exploiting temporal information without sacrificing computational and memory resources. In particular, instead of using recursive neural networks, large causal filters, or many layers, DC-VAE relies on Dilated Convolutions (DC) to capture long and short term phenomena in the data, avoiding complex and less-efficient deep architectures, thus simplifying learning. We evaluate DC-VAE on the detection of anomalies in the TELCO dataset, a large-scale, multi-dimensional network monitoring dataset collected at an operational mobile Internet Service Provider (ISP), where anomalous events were manually labeled by experts during a time span of seven-months, at a five-minutes granularity. Results show the main properties and advantages introduced by VAEs for time-series anomaly detection, as well as the out-performance of DC-VAE as compared to standard VAEs for time-series modeling. We also evaluate DC-VAE in open, publicly available datasets, comparing its performance against other multivariate anomaly detectors based on deep learning generative models. For the sake of reproducibility and as an additional contribution, we make the TELCO dataset publicly available to the community, and openly release the code implementing DC-VAE.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2023-02-08T15:50:18Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) GMFGAC22a.pdf: 4397929 bytes, checksum: c4e76b89b4c17ee131e2cb3796219f2a (MD5)Rejected by Machado Jimena (jmachado@fing.edu.uy), reason: para corrección on 2023-02-09T17:58:20Z (GMT)Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2023-02-09T18:00:40Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) GMFGAMC22.pdf: 4397929 bytes, checksum: c4e76b89b4c17ee131e2cb3796219f2a (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2023-02-09T18:02:10Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) GMFGAMC22.pdf: 4397929 bytes, checksum: c4e76b89b4c17ee131e2cb3796219f2a (MD5)Made available in DSpace by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2023-02-09T18:06:37Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) GMFGAMC22.pdf: 4397929 bytes, checksum: c4e76b89b4c17ee131e2cb3796219f2a (MD5) Previous issue date: 2022Este trabajo se encuentra parcialmente financiado por el proyecto austriaco FFG ICTof-the-Future project DynAISEC - Adaptive AI/ML for Dynamic Cybersecurity Systems, por el proyecto ANII-FMV con referencia FMV1-2019-1-155850 Anomaly Detection with Continual and Streaming Machine Learning on Big Data Telecommunications Networks y por Telefónica.Gastón García fue apoyado por la beca ANII POS-FMV-2020-1-1009239 y por CSIC, en el marco del programa Movilidad e Intercambios Académicos 2022.7 p.application/pdfenengACM8th SIGKDD International Workshop on Mining and Learning from Time Series -- Deep Forecasting : Models, Interpretability, and Applications, Washington, DC, USA, aug. 15 2022, pp. 1-7.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Anomaly DetectionDeep LearningMultivariate Time-SeriesDilated ConvolutionVAEReproducibilityNew DatasetsMining multivariate time-series for anomaly detection in mobile networks on the usage of variational auto encoders and dilated convolutionsPonenciainfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaGarcía González, GastónMartínez Tagliafico, SergioFernández, AliciaGómez, GabrielAcuña, JoséMariño, CamiloCasas, PedroProcesamiento de SeñalesProcesamiento de SeñalesTelecomunicacionesTelecomunicacionesAnálisis de Redes, Tráfico y Estadísticas de ServiciosTratamiento de ImágenesAnálisis de Redes, Tráfico y Estadísticas de ServiciosTratamiento de ImágenesLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/35836/10/license.txt6429389a7df7277b72b7924fdc7d47a9MD510CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/35836/7/license_urla006180e3f5b2ad0b88185d14284c0e0MD57license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/35836/8/license_text36c32e9c6da50e6d55578c16944ef7f6MD58license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/35836/9/license_rdf1996b8461bc290aef6a27d78c67b6b52MD59ORIGINALGMFGAMC22.pdfGMFGAMC22.pdfapplication/pdf4397929http://localhost:8080/xmlui/bitstream/20.500.12008/35836/6/GMFGAMC22.pdfc4e76b89b4c17ee131e2cb3796219f2aMD5620.500.12008/358362024-07-24 17:25:46.7oai:colibri.udelar.edu.uy:20.500.12008/35836VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:19.022111COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Mining multivariate time-series for anomaly detection in mobile networks on the usage of variational auto encoders and dilated convolutions García González, Gastón Anomaly Detection Deep Learning Multivariate Time-Series Dilated Convolution VAE Reproducibility New Datasets |
status_str | publishedVersion |
title | Mining multivariate time-series for anomaly detection in mobile networks on the usage of variational auto encoders and dilated convolutions |
title_full | Mining multivariate time-series for anomaly detection in mobile networks on the usage of variational auto encoders and dilated convolutions |
title_fullStr | Mining multivariate time-series for anomaly detection in mobile networks on the usage of variational auto encoders and dilated convolutions |
title_full_unstemmed | Mining multivariate time-series for anomaly detection in mobile networks on the usage of variational auto encoders and dilated convolutions |
title_short | Mining multivariate time-series for anomaly detection in mobile networks on the usage of variational auto encoders and dilated convolutions |
title_sort | Mining multivariate time-series for anomaly detection in mobile networks on the usage of variational auto encoders and dilated convolutions |
topic | Anomaly Detection Deep Learning Multivariate Time-Series Dilated Convolution VAE Reproducibility New Datasets |
url | https://kdd-milets.github.io/milets2022/ https://kdd-milets.github.io/milets2022/#papers https://hdl.handle.net/20.500.12008/35836 |