Central Limit Theorem for the volume of the zero set of Kostlan-Shub-Smale random polynomial systems

Azaïs, J.M. - Armentano, Diego - Dalmao Artigas, Federico - León, José Rafael

Resumen:

We state the Central Limit Theorem, as the degree goes to infinity, for the normalized volume of the zero set of a rectangular Kostlan-Shub-Smale random polynomial system. This paper is a continuation of {\it Central Limit Theorem for the number of real roots of Kostlan Shub Smale random polynomial systems} by the same authors in which the square case was considered. Our main tools are the Kac-Rice formula for the second moment of the volume of the zero set and an expansion of this random variable into the Itô-Wiener Chaos.


Detalles Bibliográficos
2021
Kostlan–Shub–Smale random polynomial systems
Co-area formula
Kac-Rice formula
Central limit theorem
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/38119
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807522796308267008
author Azaïs, J.M.
author2 Armentano, Diego
Dalmao Artigas, Federico
León, José Rafael
author2_role author
author
author
author_facet Azaïs, J.M.
Armentano, Diego
Dalmao Artigas, Federico
León, José Rafael
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
e8c30e04e865334cac2bfcba70aad8cb
1996b8461bc290aef6a27d78c67b6b52
4d644c8de1dc261f2789a3cba5154836
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/38119/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/38119/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/38119/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/38119/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/38119/1/1808.02967.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Azaïs J.M., Université de Toulouse
Armentano Diego, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática.
Dalmao Artigas Federico, Universidad de la República (Uruguay). CENUR.
León José Rafael, Universidad de la República (Uruguay). Facultad de Ingeniería
dc.creator.none.fl_str_mv Azaïs, J.M.
Armentano, Diego
Dalmao Artigas, Federico
León, José Rafael
dc.date.accessioned.none.fl_str_mv 2023-07-13T13:11:22Z
dc.date.available.none.fl_str_mv 2023-07-13T13:11:22Z
dc.date.issued.none.fl_str_mv 2021
dc.description.abstract.none.fl_txt_mv We state the Central Limit Theorem, as the degree goes to infinity, for the normalized volume of the zero set of a rectangular Kostlan-Shub-Smale random polynomial system. This paper is a continuation of {\it Central Limit Theorem for the number of real roots of Kostlan Shub Smale random polynomial systems} by the same authors in which the square case was considered. Our main tools are the Kac-Rice formula for the second moment of the volume of the zero set and an expansion of this random variable into the Itô-Wiener Chaos.
dc.description.es.fl_txt_mv Publicado también como: American Journal of Mathematics, 2021, 143(4): 1011-1042. DOI: 10.1353/ajm.2021.0026
dc.format.extent.es.fl_str_mv 17 h.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Azaïs, J, Armentano, D, Dalmao Artigas, F [y otro autor] "Central Limit Theorem for the volume of the zero set of Kostlan-Shub-Smale random polynomial systems". [Preprint]. Publicado en: Mathematics (Probability). 2021 arXiv:1801.06331, Sep 2021, pp 1-17 .
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/38119
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv arXiv
dc.relation.ispartof.es.fl_str_mv Mathematics (Probability), arXiv:1801.06331, Sep 2021, pp 1-17
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Kostlan–Shub–Smale random polynomial systems
Co-area formula
Kac-Rice formula
Central limit theorem
dc.title.none.fl_str_mv Central Limit Theorem for the volume of the zero set of Kostlan-Shub-Smale random polynomial systems
dc.type.es.fl_str_mv Preprint
dc.type.none.fl_str_mv info:eu-repo/semantics/preprint
dc.type.version.none.fl_str_mv info:eu-repo/semantics/submittedVersion
description Publicado también como: American Journal of Mathematics, 2021, 143(4): 1011-1042. DOI: 10.1353/ajm.2021.0026
eu_rights_str_mv openAccess
format preprint
id COLIBRI_f7dc9f737f66993de5f33f763b94e877
identifier_str_mv Azaïs, J, Armentano, D, Dalmao Artigas, F [y otro autor] "Central Limit Theorem for the volume of the zero set of Kostlan-Shub-Smale random polynomial systems". [Preprint]. Publicado en: Mathematics (Probability). 2021 arXiv:1801.06331, Sep 2021, pp 1-17 .
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/38119
publishDate 2021
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Azaïs J.M., Université de ToulouseArmentano Diego, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática.Dalmao Artigas Federico, Universidad de la República (Uruguay). CENUR.León José Rafael, Universidad de la República (Uruguay). Facultad de Ingeniería2023-07-13T13:11:22Z2023-07-13T13:11:22Z2021Azaïs, J, Armentano, D, Dalmao Artigas, F [y otro autor] "Central Limit Theorem for the volume of the zero set of Kostlan-Shub-Smale random polynomial systems". [Preprint]. Publicado en: Mathematics (Probability). 2021 arXiv:1801.06331, Sep 2021, pp 1-17 .https://hdl.handle.net/20.500.12008/38119Publicado también como: American Journal of Mathematics, 2021, 143(4): 1011-1042. DOI: 10.1353/ajm.2021.0026We state the Central Limit Theorem, as the degree goes to infinity, for the normalized volume of the zero set of a rectangular Kostlan-Shub-Smale random polynomial system. This paper is a continuation of {\it Central Limit Theorem for the number of real roots of Kostlan Shub Smale random polynomial systems} by the same authors in which the square case was considered. Our main tools are the Kac-Rice formula for the second moment of the volume of the zero set and an expansion of this random variable into the Itô-Wiener Chaos.Submitted by Faget Cecilia (lfaget@fcien.edu.uy) on 2023-07-13T11:18:03Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) 1808.02967.pdf: 295497 bytes, checksum: 4d644c8de1dc261f2789a3cba5154836 (MD5)Approved for entry into archive by Faget Cecilia (lfaget@fcien.edu.uy) on 2023-07-13T11:36:39Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) 1808.02967.pdf: 295497 bytes, checksum: 4d644c8de1dc261f2789a3cba5154836 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2023-07-13T13:11:22Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) 1808.02967.pdf: 295497 bytes, checksum: 4d644c8de1dc261f2789a3cba5154836 (MD5) Previous issue date: 202117 h.application/pdfenengarXivMathematics (Probability), arXiv:1801.06331, Sep 2021, pp 1-17Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Kostlan–Shub–Smale random polynomial systemsCo-area formulaKac-Rice formulaCentral limit theoremCentral Limit Theorem for the volume of the zero set of Kostlan-Shub-Smale random polynomial systemsPreprintinfo:eu-repo/semantics/preprintinfo:eu-repo/semantics/submittedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaAzaïs, J.M.Armentano, DiegoDalmao Artigas, FedericoLeón, José RafaelLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/38119/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/38119/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838782http://localhost:8080/xmlui/bitstream/20.500.12008/38119/3/license_texte8c30e04e865334cac2bfcba70aad8cbMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/38119/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINAL1808.02967.pdf1808.02967.pdfapplication/pdf295497http://localhost:8080/xmlui/bitstream/20.500.12008/38119/1/1808.02967.pdf4d644c8de1dc261f2789a3cba5154836MD5120.500.12008/381192023-07-13 10:11:22.243oai:colibri.udelar.edu.uy:20.500.12008/38119VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:28:57.439614COLIBRI - Universidad de la Repúblicafalse
spellingShingle Central Limit Theorem for the volume of the zero set of Kostlan-Shub-Smale random polynomial systems
Azaïs, J.M.
Kostlan–Shub–Smale random polynomial systems
Co-area formula
Kac-Rice formula
Central limit theorem
status_str submittedVersion
title Central Limit Theorem for the volume of the zero set of Kostlan-Shub-Smale random polynomial systems
title_full Central Limit Theorem for the volume of the zero set of Kostlan-Shub-Smale random polynomial systems
title_fullStr Central Limit Theorem for the volume of the zero set of Kostlan-Shub-Smale random polynomial systems
title_full_unstemmed Central Limit Theorem for the volume of the zero set of Kostlan-Shub-Smale random polynomial systems
title_short Central Limit Theorem for the volume of the zero set of Kostlan-Shub-Smale random polynomial systems
title_sort Central Limit Theorem for the volume of the zero set of Kostlan-Shub-Smale random polynomial systems
topic Kostlan–Shub–Smale random polynomial systems
Co-area formula
Kac-Rice formula
Central limit theorem
url https://hdl.handle.net/20.500.12008/38119