Compression algorithms for biomedical signals and nanopore sequencing data

Dufort y Álvarez Zorrilla de San Martín, Guillermo

Supervisor(es): Martín Menoni, Álvaro

Resumen:

The massive generation of biological digital information creates various computing challenges such as its storage and transmission. For example, biomedical signals, such as electroencephalograms (EEG), are recorded by multiple sensors over long periods of time, resulting in large volumes of data. Another example is genome DNA sequencing data, where the amount of data generated globally is seeing explosive growth, leading to increasing needs for processing, storage, and transmission resources. In this thesis we investigate the use of data compression techniques for this problem, in two different scenarios where computational efficiency is crucial. First we study the compression of multi-channel biomedical signals. We present a new lossless data compressor for multi-channel signals, GSC, which achieves compression performance similar to the state of the art, while being more computationally efficient than other available alternatives. The compressor uses two novel integer-based implementations of the predictive coding and expert advice schemes for multi-channel signals. We also develop a version of GSC optimized for EEG data. This version manages to significantly lower compression times while attaining similar compression performance for that specic type of signal. In a second scenario we study the compression of DNA sequencing data produced by nanopore sequencing technologies. We present two novel lossless compression algorithms specifically tailored to nanopore FASTQ files. ENANO is a reference-free compressor, which mainly focuses on the compression of quality scores. It achieves state of the art compression performance, while being fast and with low memory consumption when compared to other popular FASTQ compression tools. On the other hand, RENANO is a reference-based compressor, which improves on ENANO, by providing a more efficient base call sequence compression component. For RENANO two algorithms are introduced, corresponding to the following scenarios: a reference genome is available without cost to both the compressor and the decompressor; and the reference genome is available only on the compressor side, and a compacted version of the reference is included in the compressed le. Both algorithms of RENANO significantly improve the compression performance of ENANO, with similar compression times, and higher memory requirements.


La generación masiva de información digital biológica da lugar a múltiples desafíos informáticos, como su almacenamiento y transmisión. Por ejemplo, las señales biomédicas, como los electroencefalogramas (EEG), son generadas por múltiples sensores registrando medidas en simultaneo durante largos períodos de tiempo, generando grandes volúmenes de datos. Otro ejemplo son los datos de secuenciación de ADN, en donde la cantidad de datos a nivel mundial esta creciendo de forma explosiva, lo que da lugar a una gran necesidad de recursos de procesamiento, almacenamiento y transmisión. En esta tesis investigamos como aplicar técnicas de compresión de datos para atacar este problema, en dos escenarios diferentes donde la eficiencia computacional juega un rol importante. Primero estudiamos la compresión de señales biomédicas multicanal. Comenzamos presentando un nuevo compresor de datos sin perdida para señales multicanal, GSC, que logra obtener niveles de compresión en el estado del arte y que al mismo tiempo es mas eficiente computacionalmente que otras alternativas disponibles. El compresor utiliza dos nuevas implementaciones de los esquemas de codificación predictiva y de asesoramiento de expertos para señales multicanal, basadas en aritmética de enteros. También presentamos una versión de GSC optimizada para datos de EEG. Esta versión logra reducir significativamente los tiempos de compresión, sin deteriorar significativamente los niveles de compresión para datos de EEG. En un segundo escenario estudiamos la compresión de datos de secuenciación de ADN generados por tecnologías de secuenciación por nanoporos. En este sentido, presentamos dos nuevos algoritmos de compresión sin perdida, específicamente diseñados para archivos FASTQ generados por tecnología de nanoporos. ENANO es un compresor libre de referencia, enfocado principalmente en la compresión de los valores de calidad de las bases. ENANO alcanza niveles de compresión en el estado del arte, siendo a la vez mas eficiente computacionalmente que otras herramientas populares de compresión de archivos FASTQ. Por otro lado, RENANO es un compresor basado en la utilización de una referencia, que mejora el rendimiento de ENANO, a partir de un nuevo esquema de compresión de las secuencias de bases. Presentamos dos variantes de RENANO, correspondientes a los siguientes escenarios: (i) se tiene a disposición un genoma de referencia, tanto del lado del compresor como del descompresor, y (ii) se tiene un genoma de referencia disponible solo del lado del compresor, y se incluye una versión compacta de la referencia en el archivo comprimido. Ambas variantes de RENANO mejoran significativamente los niveles compresión de ENANO, alcanzando tiempos de compresión similares y un mayor consumo de memoria.


Detalles Bibliográficos
2021
Compresión de datos sin pérdida
Señales multi-canal
Electroencefalogramas
Secuenciación de ADN
Secuenciación por nanoporos
Compresión efi ciente
Lossless data compression
Multi-channel signals
Electroencephalograms
DNA sequencing
Nanopore sequencing
Efficient compression
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/33017
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)