Compression algorithms for biomedical signals and nanopore sequencing data

Dufort y Álvarez Zorrilla de San Martín, Guillermo

Supervisor(es): Martín Menoni, Álvaro

Resumen:

The massive generation of biological digital information creates various computing challenges such as its storage and transmission. For example, biomedical signals, such as electroencephalograms (EEG), are recorded by multiple sensors over long periods of time, resulting in large volumes of data. Another example is genome DNA sequencing data, where the amount of data generated globally is seeing explosive growth, leading to increasing needs for processing, storage, and transmission resources. In this thesis we investigate the use of data compression techniques for this problem, in two different scenarios where computational efficiency is crucial. First we study the compression of multi-channel biomedical signals. We present a new lossless data compressor for multi-channel signals, GSC, which achieves compression performance similar to the state of the art, while being more computationally efficient than other available alternatives. The compressor uses two novel integer-based implementations of the predictive coding and expert advice schemes for multi-channel signals. We also develop a version of GSC optimized for EEG data. This version manages to significantly lower compression times while attaining similar compression performance for that specic type of signal. In a second scenario we study the compression of DNA sequencing data produced by nanopore sequencing technologies. We present two novel lossless compression algorithms specifically tailored to nanopore FASTQ files. ENANO is a reference-free compressor, which mainly focuses on the compression of quality scores. It achieves state of the art compression performance, while being fast and with low memory consumption when compared to other popular FASTQ compression tools. On the other hand, RENANO is a reference-based compressor, which improves on ENANO, by providing a more efficient base call sequence compression component. For RENANO two algorithms are introduced, corresponding to the following scenarios: a reference genome is available without cost to both the compressor and the decompressor; and the reference genome is available only on the compressor side, and a compacted version of the reference is included in the compressed le. Both algorithms of RENANO significantly improve the compression performance of ENANO, with similar compression times, and higher memory requirements.


La generación masiva de información digital biológica da lugar a múltiples desafíos informáticos, como su almacenamiento y transmisión. Por ejemplo, las señales biomédicas, como los electroencefalogramas (EEG), son generadas por múltiples sensores registrando medidas en simultaneo durante largos períodos de tiempo, generando grandes volúmenes de datos. Otro ejemplo son los datos de secuenciación de ADN, en donde la cantidad de datos a nivel mundial esta creciendo de forma explosiva, lo que da lugar a una gran necesidad de recursos de procesamiento, almacenamiento y transmisión. En esta tesis investigamos como aplicar técnicas de compresión de datos para atacar este problema, en dos escenarios diferentes donde la eficiencia computacional juega un rol importante. Primero estudiamos la compresión de señales biomédicas multicanal. Comenzamos presentando un nuevo compresor de datos sin perdida para señales multicanal, GSC, que logra obtener niveles de compresión en el estado del arte y que al mismo tiempo es mas eficiente computacionalmente que otras alternativas disponibles. El compresor utiliza dos nuevas implementaciones de los esquemas de codificación predictiva y de asesoramiento de expertos para señales multicanal, basadas en aritmética de enteros. También presentamos una versión de GSC optimizada para datos de EEG. Esta versión logra reducir significativamente los tiempos de compresión, sin deteriorar significativamente los niveles de compresión para datos de EEG. En un segundo escenario estudiamos la compresión de datos de secuenciación de ADN generados por tecnologías de secuenciación por nanoporos. En este sentido, presentamos dos nuevos algoritmos de compresión sin perdida, específicamente diseñados para archivos FASTQ generados por tecnología de nanoporos. ENANO es un compresor libre de referencia, enfocado principalmente en la compresión de los valores de calidad de las bases. ENANO alcanza niveles de compresión en el estado del arte, siendo a la vez mas eficiente computacionalmente que otras herramientas populares de compresión de archivos FASTQ. Por otro lado, RENANO es un compresor basado en la utilización de una referencia, que mejora el rendimiento de ENANO, a partir de un nuevo esquema de compresión de las secuencias de bases. Presentamos dos variantes de RENANO, correspondientes a los siguientes escenarios: (i) se tiene a disposición un genoma de referencia, tanto del lado del compresor como del descompresor, y (ii) se tiene un genoma de referencia disponible solo del lado del compresor, y se incluye una versión compacta de la referencia en el archivo comprimido. Ambas variantes de RENANO mejoran significativamente los niveles compresión de ENANO, alcanzando tiempos de compresión similares y un mayor consumo de memoria.


Detalles Bibliográficos
2021
Compresión de datos sin pérdida
Señales multi-canal
Electroencefalogramas
Secuenciación de ADN
Secuenciación por nanoporos
Compresión efi ciente
Lossless data compression
Multi-channel signals
Electroencephalograms
DNA sequencing
Nanopore sequencing
Efficient compression
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/33017
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523182512439296
author Dufort y Álvarez Zorrilla de San Martín, Guillermo
author_facet Dufort y Álvarez Zorrilla de San Martín, Guillermo
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
36c32e9c6da50e6d55578c16944ef7f6
1996b8461bc290aef6a27d78c67b6b52
70f9d98f5c7c5db248daa8d390818876
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/33017/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/33017/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/33017/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/33017/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/33017/1/Duf21.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Dufort y Álvarez Zorrilla de San Martín Guillermo, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creator.advisor.none.fl_str_mv Martín Menoni, Álvaro
dc.creator.none.fl_str_mv Dufort y Álvarez Zorrilla de San Martín, Guillermo
dc.date.accessioned.none.fl_str_mv 2022-08-10T12:21:40Z
dc.date.available.none.fl_str_mv 2022-08-10T12:21:40Z
dc.date.issued.none.fl_str_mv 2021
dc.description.abstract.none.fl_txt_mv The massive generation of biological digital information creates various computing challenges such as its storage and transmission. For example, biomedical signals, such as electroencephalograms (EEG), are recorded by multiple sensors over long periods of time, resulting in large volumes of data. Another example is genome DNA sequencing data, where the amount of data generated globally is seeing explosive growth, leading to increasing needs for processing, storage, and transmission resources. In this thesis we investigate the use of data compression techniques for this problem, in two different scenarios where computational efficiency is crucial. First we study the compression of multi-channel biomedical signals. We present a new lossless data compressor for multi-channel signals, GSC, which achieves compression performance similar to the state of the art, while being more computationally efficient than other available alternatives. The compressor uses two novel integer-based implementations of the predictive coding and expert advice schemes for multi-channel signals. We also develop a version of GSC optimized for EEG data. This version manages to significantly lower compression times while attaining similar compression performance for that specic type of signal. In a second scenario we study the compression of DNA sequencing data produced by nanopore sequencing technologies. We present two novel lossless compression algorithms specifically tailored to nanopore FASTQ files. ENANO is a reference-free compressor, which mainly focuses on the compression of quality scores. It achieves state of the art compression performance, while being fast and with low memory consumption when compared to other popular FASTQ compression tools. On the other hand, RENANO is a reference-based compressor, which improves on ENANO, by providing a more efficient base call sequence compression component. For RENANO two algorithms are introduced, corresponding to the following scenarios: a reference genome is available without cost to both the compressor and the decompressor; and the reference genome is available only on the compressor side, and a compacted version of the reference is included in the compressed le. Both algorithms of RENANO significantly improve the compression performance of ENANO, with similar compression times, and higher memory requirements.
La generación masiva de información digital biológica da lugar a múltiples desafíos informáticos, como su almacenamiento y transmisión. Por ejemplo, las señales biomédicas, como los electroencefalogramas (EEG), son generadas por múltiples sensores registrando medidas en simultaneo durante largos períodos de tiempo, generando grandes volúmenes de datos. Otro ejemplo son los datos de secuenciación de ADN, en donde la cantidad de datos a nivel mundial esta creciendo de forma explosiva, lo que da lugar a una gran necesidad de recursos de procesamiento, almacenamiento y transmisión. En esta tesis investigamos como aplicar técnicas de compresión de datos para atacar este problema, en dos escenarios diferentes donde la eficiencia computacional juega un rol importante. Primero estudiamos la compresión de señales biomédicas multicanal. Comenzamos presentando un nuevo compresor de datos sin perdida para señales multicanal, GSC, que logra obtener niveles de compresión en el estado del arte y que al mismo tiempo es mas eficiente computacionalmente que otras alternativas disponibles. El compresor utiliza dos nuevas implementaciones de los esquemas de codificación predictiva y de asesoramiento de expertos para señales multicanal, basadas en aritmética de enteros. También presentamos una versión de GSC optimizada para datos de EEG. Esta versión logra reducir significativamente los tiempos de compresión, sin deteriorar significativamente los niveles de compresión para datos de EEG. En un segundo escenario estudiamos la compresión de datos de secuenciación de ADN generados por tecnologías de secuenciación por nanoporos. En este sentido, presentamos dos nuevos algoritmos de compresión sin perdida, específicamente diseñados para archivos FASTQ generados por tecnología de nanoporos. ENANO es un compresor libre de referencia, enfocado principalmente en la compresión de los valores de calidad de las bases. ENANO alcanza niveles de compresión en el estado del arte, siendo a la vez mas eficiente computacionalmente que otras herramientas populares de compresión de archivos FASTQ. Por otro lado, RENANO es un compresor basado en la utilización de una referencia, que mejora el rendimiento de ENANO, a partir de un nuevo esquema de compresión de las secuencias de bases. Presentamos dos variantes de RENANO, correspondientes a los siguientes escenarios: (i) se tiene a disposición un genoma de referencia, tanto del lado del compresor como del descompresor, y (ii) se tiene un genoma de referencia disponible solo del lado del compresor, y se incluye una versión compacta de la referencia en el archivo comprimido. Ambas variantes de RENANO mejoran significativamente los niveles compresión de ENANO, alcanzando tiempos de compresión similares y un mayor consumo de memoria.
dc.format.extent.es.fl_str_mv 130 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Dufort y Álvarez Zorrilla de San Martín, G. Compression algorithms for biomedical signals and nanopore sequencing data [en línea] Tesis de doctorado. Montevideo : Udelar. FI. : PEDECIBA, 2021.
dc.identifier.issn.none.fl_str_mv 1688-2776
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/33017
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv Udelar. FI.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Compresión de datos sin pérdida
Señales multi-canal
Electroencefalogramas
Secuenciación de ADN
Secuenciación por nanoporos
Compresión efi ciente
Lossless data compression
Multi-channel signals
Electroencephalograms
DNA sequencing
Nanopore sequencing
Efficient compression
dc.title.none.fl_str_mv Compression algorithms for biomedical signals and nanopore sequencing data
dc.type.es.fl_str_mv Tesis de doctorado
dc.type.none.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description The massive generation of biological digital information creates various computing challenges such as its storage and transmission. For example, biomedical signals, such as electroencephalograms (EEG), are recorded by multiple sensors over long periods of time, resulting in large volumes of data. Another example is genome DNA sequencing data, where the amount of data generated globally is seeing explosive growth, leading to increasing needs for processing, storage, and transmission resources. In this thesis we investigate the use of data compression techniques for this problem, in two different scenarios where computational efficiency is crucial. First we study the compression of multi-channel biomedical signals. We present a new lossless data compressor for multi-channel signals, GSC, which achieves compression performance similar to the state of the art, while being more computationally efficient than other available alternatives. The compressor uses two novel integer-based implementations of the predictive coding and expert advice schemes for multi-channel signals. We also develop a version of GSC optimized for EEG data. This version manages to significantly lower compression times while attaining similar compression performance for that specic type of signal. In a second scenario we study the compression of DNA sequencing data produced by nanopore sequencing technologies. We present two novel lossless compression algorithms specifically tailored to nanopore FASTQ files. ENANO is a reference-free compressor, which mainly focuses on the compression of quality scores. It achieves state of the art compression performance, while being fast and with low memory consumption when compared to other popular FASTQ compression tools. On the other hand, RENANO is a reference-based compressor, which improves on ENANO, by providing a more efficient base call sequence compression component. For RENANO two algorithms are introduced, corresponding to the following scenarios: a reference genome is available without cost to both the compressor and the decompressor; and the reference genome is available only on the compressor side, and a compacted version of the reference is included in the compressed le. Both algorithms of RENANO significantly improve the compression performance of ENANO, with similar compression times, and higher memory requirements.
eu_rights_str_mv openAccess
format doctoralThesis
id COLIBRI_f769ff9ca85f87e774792ce7d0daee7d
identifier_str_mv Dufort y Álvarez Zorrilla de San Martín, G. Compression algorithms for biomedical signals and nanopore sequencing data [en línea] Tesis de doctorado. Montevideo : Udelar. FI. : PEDECIBA, 2021.
1688-2776
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/33017
publishDate 2021
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Dufort y Álvarez Zorrilla de San Martín Guillermo, Universidad de la República (Uruguay). Facultad de Ingeniería.2022-08-10T12:21:40Z2022-08-10T12:21:40Z2021Dufort y Álvarez Zorrilla de San Martín, G. Compression algorithms for biomedical signals and nanopore sequencing data [en línea] Tesis de doctorado. Montevideo : Udelar. FI. : PEDECIBA, 2021.1688-2776https://hdl.handle.net/20.500.12008/33017The massive generation of biological digital information creates various computing challenges such as its storage and transmission. For example, biomedical signals, such as electroencephalograms (EEG), are recorded by multiple sensors over long periods of time, resulting in large volumes of data. Another example is genome DNA sequencing data, where the amount of data generated globally is seeing explosive growth, leading to increasing needs for processing, storage, and transmission resources. In this thesis we investigate the use of data compression techniques for this problem, in two different scenarios where computational efficiency is crucial. First we study the compression of multi-channel biomedical signals. We present a new lossless data compressor for multi-channel signals, GSC, which achieves compression performance similar to the state of the art, while being more computationally efficient than other available alternatives. The compressor uses two novel integer-based implementations of the predictive coding and expert advice schemes for multi-channel signals. We also develop a version of GSC optimized for EEG data. This version manages to significantly lower compression times while attaining similar compression performance for that specic type of signal. In a second scenario we study the compression of DNA sequencing data produced by nanopore sequencing technologies. We present two novel lossless compression algorithms specifically tailored to nanopore FASTQ files. ENANO is a reference-free compressor, which mainly focuses on the compression of quality scores. It achieves state of the art compression performance, while being fast and with low memory consumption when compared to other popular FASTQ compression tools. On the other hand, RENANO is a reference-based compressor, which improves on ENANO, by providing a more efficient base call sequence compression component. For RENANO two algorithms are introduced, corresponding to the following scenarios: a reference genome is available without cost to both the compressor and the decompressor; and the reference genome is available only on the compressor side, and a compacted version of the reference is included in the compressed le. Both algorithms of RENANO significantly improve the compression performance of ENANO, with similar compression times, and higher memory requirements.La generación masiva de información digital biológica da lugar a múltiples desafíos informáticos, como su almacenamiento y transmisión. Por ejemplo, las señales biomédicas, como los electroencefalogramas (EEG), son generadas por múltiples sensores registrando medidas en simultaneo durante largos períodos de tiempo, generando grandes volúmenes de datos. Otro ejemplo son los datos de secuenciación de ADN, en donde la cantidad de datos a nivel mundial esta creciendo de forma explosiva, lo que da lugar a una gran necesidad de recursos de procesamiento, almacenamiento y transmisión. En esta tesis investigamos como aplicar técnicas de compresión de datos para atacar este problema, en dos escenarios diferentes donde la eficiencia computacional juega un rol importante. Primero estudiamos la compresión de señales biomédicas multicanal. Comenzamos presentando un nuevo compresor de datos sin perdida para señales multicanal, GSC, que logra obtener niveles de compresión en el estado del arte y que al mismo tiempo es mas eficiente computacionalmente que otras alternativas disponibles. El compresor utiliza dos nuevas implementaciones de los esquemas de codificación predictiva y de asesoramiento de expertos para señales multicanal, basadas en aritmética de enteros. También presentamos una versión de GSC optimizada para datos de EEG. Esta versión logra reducir significativamente los tiempos de compresión, sin deteriorar significativamente los niveles de compresión para datos de EEG. En un segundo escenario estudiamos la compresión de datos de secuenciación de ADN generados por tecnologías de secuenciación por nanoporos. En este sentido, presentamos dos nuevos algoritmos de compresión sin perdida, específicamente diseñados para archivos FASTQ generados por tecnología de nanoporos. ENANO es un compresor libre de referencia, enfocado principalmente en la compresión de los valores de calidad de las bases. ENANO alcanza niveles de compresión en el estado del arte, siendo a la vez mas eficiente computacionalmente que otras herramientas populares de compresión de archivos FASTQ. Por otro lado, RENANO es un compresor basado en la utilización de una referencia, que mejora el rendimiento de ENANO, a partir de un nuevo esquema de compresión de las secuencias de bases. Presentamos dos variantes de RENANO, correspondientes a los siguientes escenarios: (i) se tiene a disposición un genoma de referencia, tanto del lado del compresor como del descompresor, y (ii) se tiene un genoma de referencia disponible solo del lado del compresor, y se incluye una versión compacta de la referencia en el archivo comprimido. Ambas variantes de RENANO mejoran significativamente los niveles compresión de ENANO, alcanzando tiempos de compresión similares y un mayor consumo de memoria.Submitted by Machado Jimena (jmachado@fing.edu.uy) on 2022-08-09T18:48:49Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Duf21.pdf: 1674301 bytes, checksum: 70f9d98f5c7c5db248daa8d390818876 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2022-08-09T19:21:57Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Duf21.pdf: 1674301 bytes, checksum: 70f9d98f5c7c5db248daa8d390818876 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2022-08-10T12:21:40Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Duf21.pdf: 1674301 bytes, checksum: 70f9d98f5c7c5db248daa8d390818876 (MD5) Previous issue date: 2021130 p.application/pdfenengUdelar. FI.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Compresión de datos sin pérdidaSeñales multi-canalElectroencefalogramasSecuenciación de ADNSecuenciación por nanoporosCompresión efi cienteLossless data compressionMulti-channel signalsElectroencephalogramsDNA sequencingNanopore sequencingEfficient compressionCompression algorithms for biomedical signals and nanopore sequencing dataTesis de doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaDufort y Álvarez Zorrilla de San Martín, GuillermoMartín Menoni, ÁlvaroUniversidad de la República (Uruguay). Facultad de IngenieríaDoctor en InformáticaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/33017/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/33017/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/33017/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/33017/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALDuf21.pdfDuf21.pdfapplication/pdf1674301http://localhost:8080/xmlui/bitstream/20.500.12008/33017/1/Duf21.pdf70f9d98f5c7c5db248daa8d390818876MD5120.500.12008/330172022-08-10 11:46:52.876oai:colibri.udelar.edu.uy:20.500.12008/33017VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:28.090878COLIBRI - Universidad de la Repúblicafalse
spellingShingle Compression algorithms for biomedical signals and nanopore sequencing data
Dufort y Álvarez Zorrilla de San Martín, Guillermo
Compresión de datos sin pérdida
Señales multi-canal
Electroencefalogramas
Secuenciación de ADN
Secuenciación por nanoporos
Compresión efi ciente
Lossless data compression
Multi-channel signals
Electroencephalograms
DNA sequencing
Nanopore sequencing
Efficient compression
status_str acceptedVersion
title Compression algorithms for biomedical signals and nanopore sequencing data
title_full Compression algorithms for biomedical signals and nanopore sequencing data
title_fullStr Compression algorithms for biomedical signals and nanopore sequencing data
title_full_unstemmed Compression algorithms for biomedical signals and nanopore sequencing data
title_short Compression algorithms for biomedical signals and nanopore sequencing data
title_sort Compression algorithms for biomedical signals and nanopore sequencing data
topic Compresión de datos sin pérdida
Señales multi-canal
Electroencefalogramas
Secuenciación de ADN
Secuenciación por nanoporos
Compresión efi ciente
Lossless data compression
Multi-channel signals
Electroencephalograms
DNA sequencing
Nanopore sequencing
Efficient compression
url https://hdl.handle.net/20.500.12008/33017