Compression algorithms for biomedical signals and nanopore sequencing data
Supervisor(es): Martín Menoni, Álvaro
Resumen:
The massive generation of biological digital information creates various computing challenges such as its storage and transmission. For example, biomedical signals, such as electroencephalograms (EEG), are recorded by multiple sensors over long periods of time, resulting in large volumes of data. Another example is genome DNA sequencing data, where the amount of data generated globally is seeing explosive growth, leading to increasing needs for processing, storage, and transmission resources. In this thesis we investigate the use of data compression techniques for this problem, in two different scenarios where computational efficiency is crucial. First we study the compression of multi-channel biomedical signals. We present a new lossless data compressor for multi-channel signals, GSC, which achieves compression performance similar to the state of the art, while being more computationally efficient than other available alternatives. The compressor uses two novel integer-based implementations of the predictive coding and expert advice schemes for multi-channel signals. We also develop a version of GSC optimized for EEG data. This version manages to significantly lower compression times while attaining similar compression performance for that specic type of signal. In a second scenario we study the compression of DNA sequencing data produced by nanopore sequencing technologies. We present two novel lossless compression algorithms specifically tailored to nanopore FASTQ files. ENANO is a reference-free compressor, which mainly focuses on the compression of quality scores. It achieves state of the art compression performance, while being fast and with low memory consumption when compared to other popular FASTQ compression tools. On the other hand, RENANO is a reference-based compressor, which improves on ENANO, by providing a more efficient base call sequence compression component. For RENANO two algorithms are introduced, corresponding to the following scenarios: a reference genome is available without cost to both the compressor and the decompressor; and the reference genome is available only on the compressor side, and a compacted version of the reference is included in the compressed le. Both algorithms of RENANO significantly improve the compression performance of ENANO, with similar compression times, and higher memory requirements.
La generación masiva de información digital biológica da lugar a múltiples desafíos informáticos, como su almacenamiento y transmisión. Por ejemplo, las señales biomédicas, como los electroencefalogramas (EEG), son generadas por múltiples sensores registrando medidas en simultaneo durante largos períodos de tiempo, generando grandes volúmenes de datos. Otro ejemplo son los datos de secuenciación de ADN, en donde la cantidad de datos a nivel mundial esta creciendo de forma explosiva, lo que da lugar a una gran necesidad de recursos de procesamiento, almacenamiento y transmisión. En esta tesis investigamos como aplicar técnicas de compresión de datos para atacar este problema, en dos escenarios diferentes donde la eficiencia computacional juega un rol importante. Primero estudiamos la compresión de señales biomédicas multicanal. Comenzamos presentando un nuevo compresor de datos sin perdida para señales multicanal, GSC, que logra obtener niveles de compresión en el estado del arte y que al mismo tiempo es mas eficiente computacionalmente que otras alternativas disponibles. El compresor utiliza dos nuevas implementaciones de los esquemas de codificación predictiva y de asesoramiento de expertos para señales multicanal, basadas en aritmética de enteros. También presentamos una versión de GSC optimizada para datos de EEG. Esta versión logra reducir significativamente los tiempos de compresión, sin deteriorar significativamente los niveles de compresión para datos de EEG. En un segundo escenario estudiamos la compresión de datos de secuenciación de ADN generados por tecnologías de secuenciación por nanoporos. En este sentido, presentamos dos nuevos algoritmos de compresión sin perdida, específicamente diseñados para archivos FASTQ generados por tecnología de nanoporos. ENANO es un compresor libre de referencia, enfocado principalmente en la compresión de los valores de calidad de las bases. ENANO alcanza niveles de compresión en el estado del arte, siendo a la vez mas eficiente computacionalmente que otras herramientas populares de compresión de archivos FASTQ. Por otro lado, RENANO es un compresor basado en la utilización de una referencia, que mejora el rendimiento de ENANO, a partir de un nuevo esquema de compresión de las secuencias de bases. Presentamos dos variantes de RENANO, correspondientes a los siguientes escenarios: (i) se tiene a disposición un genoma de referencia, tanto del lado del compresor como del descompresor, y (ii) se tiene un genoma de referencia disponible solo del lado del compresor, y se incluye una versión compacta de la referencia en el archivo comprimido. Ambas variantes de RENANO mejoran significativamente los niveles compresión de ENANO, alcanzando tiempos de compresión similares y un mayor consumo de memoria.
2021 | |
Compresión de datos sin pérdida Señales multi-canal Electroencefalogramas Secuenciación de ADN Secuenciación por nanoporos Compresión efi ciente Lossless data compression Multi-channel signals Electroencephalograms DNA sequencing Nanopore sequencing Efficient compression |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/33017 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807523182512439296 |
---|---|
author | Dufort y Álvarez Zorrilla de San Martín, Guillermo |
author_facet | Dufort y Álvarez Zorrilla de San Martín, Guillermo |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a006180e3f5b2ad0b88185d14284c0e0 36c32e9c6da50e6d55578c16944ef7f6 1996b8461bc290aef6a27d78c67b6b52 70f9d98f5c7c5db248daa8d390818876 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/33017/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/33017/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/33017/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/33017/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/33017/1/Duf21.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Dufort y Álvarez Zorrilla de San Martín Guillermo, Universidad de la República (Uruguay). Facultad de Ingeniería. |
dc.creator.advisor.none.fl_str_mv | Martín Menoni, Álvaro |
dc.creator.none.fl_str_mv | Dufort y Álvarez Zorrilla de San Martín, Guillermo |
dc.date.accessioned.none.fl_str_mv | 2022-08-10T12:21:40Z |
dc.date.available.none.fl_str_mv | 2022-08-10T12:21:40Z |
dc.date.issued.none.fl_str_mv | 2021 |
dc.description.abstract.none.fl_txt_mv | The massive generation of biological digital information creates various computing challenges such as its storage and transmission. For example, biomedical signals, such as electroencephalograms (EEG), are recorded by multiple sensors over long periods of time, resulting in large volumes of data. Another example is genome DNA sequencing data, where the amount of data generated globally is seeing explosive growth, leading to increasing needs for processing, storage, and transmission resources. In this thesis we investigate the use of data compression techniques for this problem, in two different scenarios where computational efficiency is crucial. First we study the compression of multi-channel biomedical signals. We present a new lossless data compressor for multi-channel signals, GSC, which achieves compression performance similar to the state of the art, while being more computationally efficient than other available alternatives. The compressor uses two novel integer-based implementations of the predictive coding and expert advice schemes for multi-channel signals. We also develop a version of GSC optimized for EEG data. This version manages to significantly lower compression times while attaining similar compression performance for that specic type of signal. In a second scenario we study the compression of DNA sequencing data produced by nanopore sequencing technologies. We present two novel lossless compression algorithms specifically tailored to nanopore FASTQ files. ENANO is a reference-free compressor, which mainly focuses on the compression of quality scores. It achieves state of the art compression performance, while being fast and with low memory consumption when compared to other popular FASTQ compression tools. On the other hand, RENANO is a reference-based compressor, which improves on ENANO, by providing a more efficient base call sequence compression component. For RENANO two algorithms are introduced, corresponding to the following scenarios: a reference genome is available without cost to both the compressor and the decompressor; and the reference genome is available only on the compressor side, and a compacted version of the reference is included in the compressed le. Both algorithms of RENANO significantly improve the compression performance of ENANO, with similar compression times, and higher memory requirements. La generación masiva de información digital biológica da lugar a múltiples desafíos informáticos, como su almacenamiento y transmisión. Por ejemplo, las señales biomédicas, como los electroencefalogramas (EEG), son generadas por múltiples sensores registrando medidas en simultaneo durante largos períodos de tiempo, generando grandes volúmenes de datos. Otro ejemplo son los datos de secuenciación de ADN, en donde la cantidad de datos a nivel mundial esta creciendo de forma explosiva, lo que da lugar a una gran necesidad de recursos de procesamiento, almacenamiento y transmisión. En esta tesis investigamos como aplicar técnicas de compresión de datos para atacar este problema, en dos escenarios diferentes donde la eficiencia computacional juega un rol importante. Primero estudiamos la compresión de señales biomédicas multicanal. Comenzamos presentando un nuevo compresor de datos sin perdida para señales multicanal, GSC, que logra obtener niveles de compresión en el estado del arte y que al mismo tiempo es mas eficiente computacionalmente que otras alternativas disponibles. El compresor utiliza dos nuevas implementaciones de los esquemas de codificación predictiva y de asesoramiento de expertos para señales multicanal, basadas en aritmética de enteros. También presentamos una versión de GSC optimizada para datos de EEG. Esta versión logra reducir significativamente los tiempos de compresión, sin deteriorar significativamente los niveles de compresión para datos de EEG. En un segundo escenario estudiamos la compresión de datos de secuenciación de ADN generados por tecnologías de secuenciación por nanoporos. En este sentido, presentamos dos nuevos algoritmos de compresión sin perdida, específicamente diseñados para archivos FASTQ generados por tecnología de nanoporos. ENANO es un compresor libre de referencia, enfocado principalmente en la compresión de los valores de calidad de las bases. ENANO alcanza niveles de compresión en el estado del arte, siendo a la vez mas eficiente computacionalmente que otras herramientas populares de compresión de archivos FASTQ. Por otro lado, RENANO es un compresor basado en la utilización de una referencia, que mejora el rendimiento de ENANO, a partir de un nuevo esquema de compresión de las secuencias de bases. Presentamos dos variantes de RENANO, correspondientes a los siguientes escenarios: (i) se tiene a disposición un genoma de referencia, tanto del lado del compresor como del descompresor, y (ii) se tiene un genoma de referencia disponible solo del lado del compresor, y se incluye una versión compacta de la referencia en el archivo comprimido. Ambas variantes de RENANO mejoran significativamente los niveles compresión de ENANO, alcanzando tiempos de compresión similares y un mayor consumo de memoria. |
dc.format.extent.es.fl_str_mv | 130 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Dufort y Álvarez Zorrilla de San Martín, G. Compression algorithms for biomedical signals and nanopore sequencing data [en línea] Tesis de doctorado. Montevideo : Udelar. FI. : PEDECIBA, 2021. |
dc.identifier.issn.none.fl_str_mv | 1688-2776 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/33017 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | Udelar. FI. |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Compresión de datos sin pérdida Señales multi-canal Electroencefalogramas Secuenciación de ADN Secuenciación por nanoporos Compresión efi ciente Lossless data compression Multi-channel signals Electroencephalograms DNA sequencing Nanopore sequencing Efficient compression |
dc.title.none.fl_str_mv | Compression algorithms for biomedical signals and nanopore sequencing data |
dc.type.es.fl_str_mv | Tesis de doctorado |
dc.type.none.fl_str_mv | info:eu-repo/semantics/doctoralThesis |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/acceptedVersion |
description | The massive generation of biological digital information creates various computing challenges such as its storage and transmission. For example, biomedical signals, such as electroencephalograms (EEG), are recorded by multiple sensors over long periods of time, resulting in large volumes of data. Another example is genome DNA sequencing data, where the amount of data generated globally is seeing explosive growth, leading to increasing needs for processing, storage, and transmission resources. In this thesis we investigate the use of data compression techniques for this problem, in two different scenarios where computational efficiency is crucial. First we study the compression of multi-channel biomedical signals. We present a new lossless data compressor for multi-channel signals, GSC, which achieves compression performance similar to the state of the art, while being more computationally efficient than other available alternatives. The compressor uses two novel integer-based implementations of the predictive coding and expert advice schemes for multi-channel signals. We also develop a version of GSC optimized for EEG data. This version manages to significantly lower compression times while attaining similar compression performance for that specic type of signal. In a second scenario we study the compression of DNA sequencing data produced by nanopore sequencing technologies. We present two novel lossless compression algorithms specifically tailored to nanopore FASTQ files. ENANO is a reference-free compressor, which mainly focuses on the compression of quality scores. It achieves state of the art compression performance, while being fast and with low memory consumption when compared to other popular FASTQ compression tools. On the other hand, RENANO is a reference-based compressor, which improves on ENANO, by providing a more efficient base call sequence compression component. For RENANO two algorithms are introduced, corresponding to the following scenarios: a reference genome is available without cost to both the compressor and the decompressor; and the reference genome is available only on the compressor side, and a compacted version of the reference is included in the compressed le. Both algorithms of RENANO significantly improve the compression performance of ENANO, with similar compression times, and higher memory requirements. |
eu_rights_str_mv | openAccess |
format | doctoralThesis |
id | COLIBRI_f769ff9ca85f87e774792ce7d0daee7d |
identifier_str_mv | Dufort y Álvarez Zorrilla de San Martín, G. Compression algorithms for biomedical signals and nanopore sequencing data [en línea] Tesis de doctorado. Montevideo : Udelar. FI. : PEDECIBA, 2021. 1688-2776 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/33017 |
publishDate | 2021 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | Dufort y Álvarez Zorrilla de San Martín Guillermo, Universidad de la República (Uruguay). Facultad de Ingeniería.2022-08-10T12:21:40Z2022-08-10T12:21:40Z2021Dufort y Álvarez Zorrilla de San Martín, G. Compression algorithms for biomedical signals and nanopore sequencing data [en línea] Tesis de doctorado. Montevideo : Udelar. FI. : PEDECIBA, 2021.1688-2776https://hdl.handle.net/20.500.12008/33017The massive generation of biological digital information creates various computing challenges such as its storage and transmission. For example, biomedical signals, such as electroencephalograms (EEG), are recorded by multiple sensors over long periods of time, resulting in large volumes of data. Another example is genome DNA sequencing data, where the amount of data generated globally is seeing explosive growth, leading to increasing needs for processing, storage, and transmission resources. In this thesis we investigate the use of data compression techniques for this problem, in two different scenarios where computational efficiency is crucial. First we study the compression of multi-channel biomedical signals. We present a new lossless data compressor for multi-channel signals, GSC, which achieves compression performance similar to the state of the art, while being more computationally efficient than other available alternatives. The compressor uses two novel integer-based implementations of the predictive coding and expert advice schemes for multi-channel signals. We also develop a version of GSC optimized for EEG data. This version manages to significantly lower compression times while attaining similar compression performance for that specic type of signal. In a second scenario we study the compression of DNA sequencing data produced by nanopore sequencing technologies. We present two novel lossless compression algorithms specifically tailored to nanopore FASTQ files. ENANO is a reference-free compressor, which mainly focuses on the compression of quality scores. It achieves state of the art compression performance, while being fast and with low memory consumption when compared to other popular FASTQ compression tools. On the other hand, RENANO is a reference-based compressor, which improves on ENANO, by providing a more efficient base call sequence compression component. For RENANO two algorithms are introduced, corresponding to the following scenarios: a reference genome is available without cost to both the compressor and the decompressor; and the reference genome is available only on the compressor side, and a compacted version of the reference is included in the compressed le. Both algorithms of RENANO significantly improve the compression performance of ENANO, with similar compression times, and higher memory requirements.La generación masiva de información digital biológica da lugar a múltiples desafíos informáticos, como su almacenamiento y transmisión. Por ejemplo, las señales biomédicas, como los electroencefalogramas (EEG), son generadas por múltiples sensores registrando medidas en simultaneo durante largos períodos de tiempo, generando grandes volúmenes de datos. Otro ejemplo son los datos de secuenciación de ADN, en donde la cantidad de datos a nivel mundial esta creciendo de forma explosiva, lo que da lugar a una gran necesidad de recursos de procesamiento, almacenamiento y transmisión. En esta tesis investigamos como aplicar técnicas de compresión de datos para atacar este problema, en dos escenarios diferentes donde la eficiencia computacional juega un rol importante. Primero estudiamos la compresión de señales biomédicas multicanal. Comenzamos presentando un nuevo compresor de datos sin perdida para señales multicanal, GSC, que logra obtener niveles de compresión en el estado del arte y que al mismo tiempo es mas eficiente computacionalmente que otras alternativas disponibles. El compresor utiliza dos nuevas implementaciones de los esquemas de codificación predictiva y de asesoramiento de expertos para señales multicanal, basadas en aritmética de enteros. También presentamos una versión de GSC optimizada para datos de EEG. Esta versión logra reducir significativamente los tiempos de compresión, sin deteriorar significativamente los niveles de compresión para datos de EEG. En un segundo escenario estudiamos la compresión de datos de secuenciación de ADN generados por tecnologías de secuenciación por nanoporos. En este sentido, presentamos dos nuevos algoritmos de compresión sin perdida, específicamente diseñados para archivos FASTQ generados por tecnología de nanoporos. ENANO es un compresor libre de referencia, enfocado principalmente en la compresión de los valores de calidad de las bases. ENANO alcanza niveles de compresión en el estado del arte, siendo a la vez mas eficiente computacionalmente que otras herramientas populares de compresión de archivos FASTQ. Por otro lado, RENANO es un compresor basado en la utilización de una referencia, que mejora el rendimiento de ENANO, a partir de un nuevo esquema de compresión de las secuencias de bases. Presentamos dos variantes de RENANO, correspondientes a los siguientes escenarios: (i) se tiene a disposición un genoma de referencia, tanto del lado del compresor como del descompresor, y (ii) se tiene un genoma de referencia disponible solo del lado del compresor, y se incluye una versión compacta de la referencia en el archivo comprimido. Ambas variantes de RENANO mejoran significativamente los niveles compresión de ENANO, alcanzando tiempos de compresión similares y un mayor consumo de memoria.Submitted by Machado Jimena (jmachado@fing.edu.uy) on 2022-08-09T18:48:49Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Duf21.pdf: 1674301 bytes, checksum: 70f9d98f5c7c5db248daa8d390818876 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2022-08-09T19:21:57Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Duf21.pdf: 1674301 bytes, checksum: 70f9d98f5c7c5db248daa8d390818876 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2022-08-10T12:21:40Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Duf21.pdf: 1674301 bytes, checksum: 70f9d98f5c7c5db248daa8d390818876 (MD5) Previous issue date: 2021130 p.application/pdfenengUdelar. FI.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Compresión de datos sin pérdidaSeñales multi-canalElectroencefalogramasSecuenciación de ADNSecuenciación por nanoporosCompresión efi cienteLossless data compressionMulti-channel signalsElectroencephalogramsDNA sequencingNanopore sequencingEfficient compressionCompression algorithms for biomedical signals and nanopore sequencing dataTesis de doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaDufort y Álvarez Zorrilla de San Martín, GuillermoMartín Menoni, ÁlvaroUniversidad de la República (Uruguay). Facultad de IngenieríaDoctor en InformáticaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/33017/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/33017/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/33017/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/33017/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALDuf21.pdfDuf21.pdfapplication/pdf1674301http://localhost:8080/xmlui/bitstream/20.500.12008/33017/1/Duf21.pdf70f9d98f5c7c5db248daa8d390818876MD5120.500.12008/330172022-08-10 11:46:52.876oai:colibri.udelar.edu.uy:20.500.12008/33017VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:28.090878COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Compression algorithms for biomedical signals and nanopore sequencing data Dufort y Álvarez Zorrilla de San Martín, Guillermo Compresión de datos sin pérdida Señales multi-canal Electroencefalogramas Secuenciación de ADN Secuenciación por nanoporos Compresión efi ciente Lossless data compression Multi-channel signals Electroencephalograms DNA sequencing Nanopore sequencing Efficient compression |
status_str | acceptedVersion |
title | Compression algorithms for biomedical signals and nanopore sequencing data |
title_full | Compression algorithms for biomedical signals and nanopore sequencing data |
title_fullStr | Compression algorithms for biomedical signals and nanopore sequencing data |
title_full_unstemmed | Compression algorithms for biomedical signals and nanopore sequencing data |
title_short | Compression algorithms for biomedical signals and nanopore sequencing data |
title_sort | Compression algorithms for biomedical signals and nanopore sequencing data |
topic | Compresión de datos sin pérdida Señales multi-canal Electroencefalogramas Secuenciación de ADN Secuenciación por nanoporos Compresión efi ciente Lossless data compression Multi-channel signals Electroencephalograms DNA sequencing Nanopore sequencing Efficient compression |
url | https://hdl.handle.net/20.500.12008/33017 |