Charge algebra for non-abelian large gauge symmetries at O(r)
Resumen:
Asymptotic symmetries of gauge theories are known to encode infrared properties of radiative fields. In the context of tree-level Yang-Mills theory, the leading soft behavior of gluons is captured by large gauge symmetries with parameters that are O(1) in the large r expansion towards null infinity. This relation can be extended to subleading order provided one allows for large gauge symmetries with O(r) gauge parameters. The latter, however, violate standard asymptotic field fall-offs and thus their interpretation has remained incomplete. We improve on this situation by presenting a relaxation of the standard asymptotic field behavior that is compatible with O(r) gauge symmetries at linearized level. We show the extended space admits a symplectic structure on which O(1) and O(r) charges are well defined and such that their Poisson brackets reproduce the corresponding symmetry algebra.
2021 | |
Gauge symmetry Global symmetries Scattering amplitudes |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/33223 | |
Acceso abierto | |
Licencia Creative Commons Atribución (CC - By 4.0) |
Sumario: | Asymptotic symmetries of gauge theories are known to encode infrared properties of radiative fields. In the context of tree-level Yang-Mills theory, the leading soft behavior of gluons is captured by large gauge symmetries with parameters that are O(1) in the large r expansion towards null infinity. This relation can be extended to subleading order provided one allows for large gauge symmetries with O(r) gauge parameters. The latter, however, violate standard asymptotic field fall-offs and thus their interpretation has remained incomplete. We improve on this situation by presenting a relaxation of the standard asymptotic field behavior that is compatible with O(r) gauge symmetries at linearized level. We show the extended space admits a symplectic structure on which O(1) and O(r) charges are well defined and such that their Poisson brackets reproduce the corresponding symmetry algebra. |
---|