Retrieving the structure of probabilistic sequences of auditory stimuli from EEG data
Resumen:
Using a new probabilistic approach we model the relationship between sequences of auditory stimuli generated by stochastic chains and the electroencephalographic (EEG) data acquired while 19 participants were exposed to those stimuli. The structure of the chains generating the stimuli are characterized by rooted and labeled trees whose leaves, henceforth called contexts, represent the sequences of past stimuli governing the choice of the next stimulus. A classical conjecture claims that the brain assigns probabilistic models to samples of stimuli. If this is true, then the context tree generating the sequence of stimuli should be encoded in the brain activity. Using an innovative statistical procedure we show that this context tree can effectively be extracted from the EEG data, thus giving support to the classical conjecture.
2021 | |
EEG data Probabilistic sequences Auditory stimuli |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/33427 | |
Acceso abierto | |
Licencia Creative Commons Atribución (CC - By 4.0) |
Resultados similares
-
Retrieving a context tree from EEG data
Autor(es):: Duarte, Aline
Fecha de publicación:: (2019) -
Wireless EEG system achieving high throughput and reduced energy consumption through lossless and near-lossless compression.
Autor(es):: Dufort y Álvarez, Guillermo
Fecha de publicación:: (2018) -
Implementación en FPGA de un algoritmo de compresión de señales EEG multicanal.
Autor(es):: Favaro, Federico
Fecha de publicación:: (2019) -
EEG signal pre-processing for the P300 speller
Autor(es):: Patrone, Martín
Fecha de publicación:: (2015) -
Compression algorithms for biomedical signals and nanopore sequencing data
Autor(es):: Dufort y Álvarez Zorrilla de San Martín, Guillermo
Fecha de publicación:: (2021)