Fold maps associated to geodesic random walks on non-positively curved manifolds
Resumen:
We study a family of mappings from the powers of the unit tangent sphere at a point to a complete Riemannian manifold with non-positive sectional curvature, whose behavior is related to the spherical mean operator and the geodesic random walks on the manifold. We show that for odd powers of the unit tangent sphere the mappings are fold maps. Some consequences on the regularity of the transition density of geodesic random walks, and on the eigenfunctions of the spherical mean operator are discussed and related to previous work.
2020 | |
MATHEMATICS - DIFFERENTIAL GEOMETRY MATHEMATICS - PROBABILITY GEODESIC RANDOM WALK SPHERICAL MEAN OPERATOR FOLD MAPS |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/44751 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Resultados similares
-
On the finiteness of the moments of the measure of level sets of random fields
Autor(es):: Armentano, Diego
Fecha de publicación:: (2020) -
Compact curve shortening flow solutions out of non compact curve
Autor(es):: Bourni, Theodora
Fecha de publicación:: (2023) -
Optimal stopping of Brownian motion with broken drift
Autor(es):: Mordecki, Ernesto
Fecha de publicación:: (2019) -
Random walk speed is a proper function on Teichmüller space
Autor(es):: Azemar, Aitor
Fecha de publicación:: (2022) -
Termodinámica del enredo en sistemas cuánticos bipartitos simples
Autor(es):: Vallejo Preste, Andrés Mario
Fecha de publicación:: (2017)