Graph Neural Networks for genome enabled prediction of complex traits.

Hounie, Ignacio - Elenter, Juan - Etchebarne, Guillermo - Fariello, María Inés - Lecumberry, Federico

Resumen:

The advent of Graph Neural Network architectures has enabled Deep Learning on non-Euclidean data, finding numerous applications both inside and outside genomics. Here we introduce these models in the context of Genome enabled prediction of complex traits.Graph representations of genome-wide marker information can be derived treating individuals as nodes, giving place to population graphs, where each genotype is supported on a node. We address graph structures estimated solely from SNP marker data by means of the Genomic Relationship Matrix. That is, we build an association network between individuals using correlations between genotypes.In this scenario we propose a novel neural network architecture supported on these graphs. It leverages both 1D convolutions, which aim to exploit local structures along the genome arising from linkage disequilibrium, and Graph Neighbourhood Aggregation operations, so as to incorporate population structure. First, low dimensional embeddings are computed from locally aggregated genotypes, which are then concatenated with embeddings from the target node and fed to a linear predictor. These embeddings are extracted using convolutional and fully-connected layers and the model is trained end-to -end. In order to circumvent scalability issues, node neighbourhoods are sampled, thus allowing training on large graphs. The model was evaluated in the realm of Holstein cattle milk yield prediction, outperforming state-of-the-art methods. We show that neighborhood aggregation improves performance, which illustrates the potential of graph based techniques. To the best of our knowledge, this is the first Geometric Deep Learning approach to this problem.


Detalles Bibliográficos
2021
Este trabajo fue parcialmente financiado por el proyecto ANII FSDA 1-2018-1-154364.
Graphical models
GNN
Genomics
Inglés
Universidad de la República
COLIBRI
https://meetings.cshl.edu/meetings.aspx?meet=PROBGEN&year=21
https://hdl.handle.net/20.500.12008/36832
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807522932662992896
author Hounie, Ignacio
author2 Elenter, Juan
Etchebarne, Guillermo
Fariello, María Inés
Lecumberry, Federico
author2_role author
author
author
author
author_facet Hounie, Ignacio
Elenter, Juan
Etchebarne, Guillermo
Fariello, María Inés
Lecumberry, Federico
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
e8c30e04e865334cac2bfcba70aad8cb
1996b8461bc290aef6a27d78c67b6b52
1c066016e8e14876683d1f97f9c696fd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/36832/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/36832/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/36832/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/36832/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/36832/1/HEEFL21.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Hounie Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería.
Elenter Juan, Universidad de la República (Uruguay). Facultad de Ingeniería.
Etchebarne Guillermo, Universidad de la República (Uruguay). Facultad de Ingeniería.
Fariello María Inés, Universidad de la República (Uruguay). Facultad de Ingeniería.
Lecumberry Federico, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creator.none.fl_str_mv Hounie, Ignacio
Elenter, Juan
Etchebarne, Guillermo
Fariello, María Inés
Lecumberry, Federico
dc.date.accessioned.none.fl_str_mv 2023-04-26T14:55:05Z
dc.date.available.none.fl_str_mv 2023-04-26T14:55:05Z
dc.date.issued.none.fl_str_mv 2021
dc.description.abstract.none.fl_txt_mv The advent of Graph Neural Network architectures has enabled Deep Learning on non-Euclidean data, finding numerous applications both inside and outside genomics. Here we introduce these models in the context of Genome enabled prediction of complex traits.Graph representations of genome-wide marker information can be derived treating individuals as nodes, giving place to population graphs, where each genotype is supported on a node. We address graph structures estimated solely from SNP marker data by means of the Genomic Relationship Matrix. That is, we build an association network between individuals using correlations between genotypes.In this scenario we propose a novel neural network architecture supported on these graphs. It leverages both 1D convolutions, which aim to exploit local structures along the genome arising from linkage disequilibrium, and Graph Neighbourhood Aggregation operations, so as to incorporate population structure. First, low dimensional embeddings are computed from locally aggregated genotypes, which are then concatenated with embeddings from the target node and fed to a linear predictor. These embeddings are extracted using convolutional and fully-connected layers and the model is trained end-to -end. In order to circumvent scalability issues, node neighbourhoods are sampled, thus allowing training on large graphs. The model was evaluated in the realm of Holstein cattle milk yield prediction, outperforming state-of-the-art methods. We show that neighborhood aggregation improves performance, which illustrates the potential of graph based techniques. To the best of our knowledge, this is the first Geometric Deep Learning approach to this problem.
dc.description.es.fl_txt_mv Los experimentos presentados en este trabajo se realizaron utilizando ClusterUY (sitio: https://cluster.uy)
dc.description.sponsorship.none.fl_txt_mv Este trabajo fue parcialmente financiado por el proyecto ANII FSDA 1-2018-1-154364.
dc.format.extent.es.fl_str_mv 1 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Hounie, I., Elenter, J., Etchebarne, G. y otros. Graph Neural Networks for genome enabled prediction of complex traits. [en línea]. Póster, 2021.
dc.identifier.uri.none.fl_str_mv https://meetings.cshl.edu/meetings.aspx?meet=PROBGEN&year=21
https://hdl.handle.net/20.500.12008/36832
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv Cold Spring Harbor Laboratory (CSHL)
dc.relation.ispartof.es.fl_str_mv Probabilistic Modeling in Genomics : Virtual Meeting, 14-16 apr 2021, Cold Spring Harbor, NY, USA
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Graphical models
GNN
Genomics
dc.title.none.fl_str_mv Graph Neural Networks for genome enabled prediction of complex traits.
dc.type.es.fl_str_mv Póster
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description Los experimentos presentados en este trabajo se realizaron utilizando ClusterUY (sitio: https://cluster.uy)
eu_rights_str_mv openAccess
format conferenceObject
id COLIBRI_f55ed4bab37edc1a24dcc40c3afdd7d8
identifier_str_mv Hounie, I., Elenter, J., Etchebarne, G. y otros. Graph Neural Networks for genome enabled prediction of complex traits. [en línea]. Póster, 2021.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/36832
publishDate 2021
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Hounie Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería.Elenter Juan, Universidad de la República (Uruguay). Facultad de Ingeniería.Etchebarne Guillermo, Universidad de la República (Uruguay). Facultad de Ingeniería.Fariello María Inés, Universidad de la República (Uruguay). Facultad de Ingeniería.Lecumberry Federico, Universidad de la República (Uruguay). Facultad de Ingeniería.2023-04-26T14:55:05Z2023-04-26T14:55:05Z2021Hounie, I., Elenter, J., Etchebarne, G. y otros. Graph Neural Networks for genome enabled prediction of complex traits. [en línea]. Póster, 2021.https://meetings.cshl.edu/meetings.aspx?meet=PROBGEN&year=21https://hdl.handle.net/20.500.12008/36832Los experimentos presentados en este trabajo se realizaron utilizando ClusterUY (sitio: https://cluster.uy)The advent of Graph Neural Network architectures has enabled Deep Learning on non-Euclidean data, finding numerous applications both inside and outside genomics. Here we introduce these models in the context of Genome enabled prediction of complex traits.Graph representations of genome-wide marker information can be derived treating individuals as nodes, giving place to population graphs, where each genotype is supported on a node. We address graph structures estimated solely from SNP marker data by means of the Genomic Relationship Matrix. That is, we build an association network between individuals using correlations between genotypes.In this scenario we propose a novel neural network architecture supported on these graphs. It leverages both 1D convolutions, which aim to exploit local structures along the genome arising from linkage disequilibrium, and Graph Neighbourhood Aggregation operations, so as to incorporate population structure. First, low dimensional embeddings are computed from locally aggregated genotypes, which are then concatenated with embeddings from the target node and fed to a linear predictor. These embeddings are extracted using convolutional and fully-connected layers and the model is trained end-to -end. In order to circumvent scalability issues, node neighbourhoods are sampled, thus allowing training on large graphs. The model was evaluated in the realm of Holstein cattle milk yield prediction, outperforming state-of-the-art methods. We show that neighborhood aggregation improves performance, which illustrates the potential of graph based techniques. To the best of our knowledge, this is the first Geometric Deep Learning approach to this problem.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2023-04-24T01:17:44Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) HEEFL21.pdf: 963365 bytes, checksum: 1c066016e8e14876683d1f97f9c696fd (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2023-04-24T20:18:37Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) HEEFL21.pdf: 963365 bytes, checksum: 1c066016e8e14876683d1f97f9c696fd (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2023-04-26T14:55:05Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) HEEFL21.pdf: 963365 bytes, checksum: 1c066016e8e14876683d1f97f9c696fd (MD5) Previous issue date: 2021Este trabajo fue parcialmente financiado por el proyecto ANII FSDA 1-2018-1-154364.1 p.application/pdfenengCold Spring Harbor Laboratory (CSHL)Probabilistic Modeling in Genomics : Virtual Meeting, 14-16 apr 2021, Cold Spring Harbor, NY, USALas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Graphical modelsGNNGenomicsGraph Neural Networks for genome enabled prediction of complex traits.Pósterinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaHounie, IgnacioElenter, JuanEtchebarne, GuillermoFariello, María InésLecumberry, FedericoLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/36832/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/36832/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838782http://localhost:8080/xmlui/bitstream/20.500.12008/36832/3/license_texte8c30e04e865334cac2bfcba70aad8cbMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/36832/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALHEEFL21.pdfHEEFL21.pdfapplication/pdf963365http://localhost:8080/xmlui/bitstream/20.500.12008/36832/1/HEEFL21.pdf1c066016e8e14876683d1f97f9c696fdMD5120.500.12008/368322023-04-26 11:55:05.488oai:colibri.udelar.edu.uy:20.500.12008/36832VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:20.190458COLIBRI - Universidad de la Repúblicafalse
spellingShingle Graph Neural Networks for genome enabled prediction of complex traits.
Hounie, Ignacio
Graphical models
GNN
Genomics
status_str publishedVersion
title Graph Neural Networks for genome enabled prediction of complex traits.
title_full Graph Neural Networks for genome enabled prediction of complex traits.
title_fullStr Graph Neural Networks for genome enabled prediction of complex traits.
title_full_unstemmed Graph Neural Networks for genome enabled prediction of complex traits.
title_short Graph Neural Networks for genome enabled prediction of complex traits.
title_sort Graph Neural Networks for genome enabled prediction of complex traits.
topic Graphical models
GNN
Genomics
url https://meetings.cshl.edu/meetings.aspx?meet=PROBGEN&year=21
https://hdl.handle.net/20.500.12008/36832