Graph Neural Networks for genome enabled prediction of complex traits.
Resumen:
The advent of Graph Neural Network architectures has enabled Deep Learning on non-Euclidean data, finding numerous applications both inside and outside genomics. Here we introduce these models in the context of Genome enabled prediction of complex traits.Graph representations of genome-wide marker information can be derived treating individuals as nodes, giving place to population graphs, where each genotype is supported on a node. We address graph structures estimated solely from SNP marker data by means of the Genomic Relationship Matrix. That is, we build an association network between individuals using correlations between genotypes.In this scenario we propose a novel neural network architecture supported on these graphs. It leverages both 1D convolutions, which aim to exploit local structures along the genome arising from linkage disequilibrium, and Graph Neighbourhood Aggregation operations, so as to incorporate population structure. First, low dimensional embeddings are computed from locally aggregated genotypes, which are then concatenated with embeddings from the target node and fed to a linear predictor. These embeddings are extracted using convolutional and fully-connected layers and the model is trained end-to -end. In order to circumvent scalability issues, node neighbourhoods are sampled, thus allowing training on large graphs. The model was evaluated in the realm of Holstein cattle milk yield prediction, outperforming state-of-the-art methods. We show that neighborhood aggregation improves performance, which illustrates the potential of graph based techniques. To the best of our knowledge, this is the first Geometric Deep Learning approach to this problem.
2021 | |
Este trabajo fue parcialmente financiado por el proyecto ANII FSDA 1-2018-1-154364. | |
Graphical models GNN Genomics |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://meetings.cshl.edu/meetings.aspx?meet=PROBGEN&year=21
https://hdl.handle.net/20.500.12008/36832 |
|
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807522932662992896 |
---|---|
author | Hounie, Ignacio |
author2 | Elenter, Juan Etchebarne, Guillermo Fariello, María Inés Lecumberry, Federico |
author2_role | author author author author |
author_facet | Hounie, Ignacio Elenter, Juan Etchebarne, Guillermo Fariello, María Inés Lecumberry, Federico |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a006180e3f5b2ad0b88185d14284c0e0 e8c30e04e865334cac2bfcba70aad8cb 1996b8461bc290aef6a27d78c67b6b52 1c066016e8e14876683d1f97f9c696fd |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/36832/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/36832/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/36832/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/36832/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/36832/1/HEEFL21.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Hounie Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería. Elenter Juan, Universidad de la República (Uruguay). Facultad de Ingeniería. Etchebarne Guillermo, Universidad de la República (Uruguay). Facultad de Ingeniería. Fariello María Inés, Universidad de la República (Uruguay). Facultad de Ingeniería. Lecumberry Federico, Universidad de la República (Uruguay). Facultad de Ingeniería. |
dc.creator.none.fl_str_mv | Hounie, Ignacio Elenter, Juan Etchebarne, Guillermo Fariello, María Inés Lecumberry, Federico |
dc.date.accessioned.none.fl_str_mv | 2023-04-26T14:55:05Z |
dc.date.available.none.fl_str_mv | 2023-04-26T14:55:05Z |
dc.date.issued.none.fl_str_mv | 2021 |
dc.description.abstract.none.fl_txt_mv | The advent of Graph Neural Network architectures has enabled Deep Learning on non-Euclidean data, finding numerous applications both inside and outside genomics. Here we introduce these models in the context of Genome enabled prediction of complex traits.Graph representations of genome-wide marker information can be derived treating individuals as nodes, giving place to population graphs, where each genotype is supported on a node. We address graph structures estimated solely from SNP marker data by means of the Genomic Relationship Matrix. That is, we build an association network between individuals using correlations between genotypes.In this scenario we propose a novel neural network architecture supported on these graphs. It leverages both 1D convolutions, which aim to exploit local structures along the genome arising from linkage disequilibrium, and Graph Neighbourhood Aggregation operations, so as to incorporate population structure. First, low dimensional embeddings are computed from locally aggregated genotypes, which are then concatenated with embeddings from the target node and fed to a linear predictor. These embeddings are extracted using convolutional and fully-connected layers and the model is trained end-to -end. In order to circumvent scalability issues, node neighbourhoods are sampled, thus allowing training on large graphs. The model was evaluated in the realm of Holstein cattle milk yield prediction, outperforming state-of-the-art methods. We show that neighborhood aggregation improves performance, which illustrates the potential of graph based techniques. To the best of our knowledge, this is the first Geometric Deep Learning approach to this problem. |
dc.description.es.fl_txt_mv | Los experimentos presentados en este trabajo se realizaron utilizando ClusterUY (sitio: https://cluster.uy) |
dc.description.sponsorship.none.fl_txt_mv | Este trabajo fue parcialmente financiado por el proyecto ANII FSDA 1-2018-1-154364. |
dc.format.extent.es.fl_str_mv | 1 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Hounie, I., Elenter, J., Etchebarne, G. y otros. Graph Neural Networks for genome enabled prediction of complex traits. [en línea]. Póster, 2021. |
dc.identifier.uri.none.fl_str_mv | https://meetings.cshl.edu/meetings.aspx?meet=PROBGEN&year=21 https://hdl.handle.net/20.500.12008/36832 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | Cold Spring Harbor Laboratory (CSHL) |
dc.relation.ispartof.es.fl_str_mv | Probabilistic Modeling in Genomics : Virtual Meeting, 14-16 apr 2021, Cold Spring Harbor, NY, USA |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Graphical models GNN Genomics |
dc.title.none.fl_str_mv | Graph Neural Networks for genome enabled prediction of complex traits. |
dc.type.es.fl_str_mv | Póster |
dc.type.none.fl_str_mv | info:eu-repo/semantics/conferenceObject |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | Los experimentos presentados en este trabajo se realizaron utilizando ClusterUY (sitio: https://cluster.uy) |
eu_rights_str_mv | openAccess |
format | conferenceObject |
id | COLIBRI_f55ed4bab37edc1a24dcc40c3afdd7d8 |
identifier_str_mv | Hounie, I., Elenter, J., Etchebarne, G. y otros. Graph Neural Networks for genome enabled prediction of complex traits. [en línea]. Póster, 2021. |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/36832 |
publishDate | 2021 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | Hounie Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería.Elenter Juan, Universidad de la República (Uruguay). Facultad de Ingeniería.Etchebarne Guillermo, Universidad de la República (Uruguay). Facultad de Ingeniería.Fariello María Inés, Universidad de la República (Uruguay). Facultad de Ingeniería.Lecumberry Federico, Universidad de la República (Uruguay). Facultad de Ingeniería.2023-04-26T14:55:05Z2023-04-26T14:55:05Z2021Hounie, I., Elenter, J., Etchebarne, G. y otros. Graph Neural Networks for genome enabled prediction of complex traits. [en línea]. Póster, 2021.https://meetings.cshl.edu/meetings.aspx?meet=PROBGEN&year=21https://hdl.handle.net/20.500.12008/36832Los experimentos presentados en este trabajo se realizaron utilizando ClusterUY (sitio: https://cluster.uy)The advent of Graph Neural Network architectures has enabled Deep Learning on non-Euclidean data, finding numerous applications both inside and outside genomics. Here we introduce these models in the context of Genome enabled prediction of complex traits.Graph representations of genome-wide marker information can be derived treating individuals as nodes, giving place to population graphs, where each genotype is supported on a node. We address graph structures estimated solely from SNP marker data by means of the Genomic Relationship Matrix. That is, we build an association network between individuals using correlations between genotypes.In this scenario we propose a novel neural network architecture supported on these graphs. It leverages both 1D convolutions, which aim to exploit local structures along the genome arising from linkage disequilibrium, and Graph Neighbourhood Aggregation operations, so as to incorporate population structure. First, low dimensional embeddings are computed from locally aggregated genotypes, which are then concatenated with embeddings from the target node and fed to a linear predictor. These embeddings are extracted using convolutional and fully-connected layers and the model is trained end-to -end. In order to circumvent scalability issues, node neighbourhoods are sampled, thus allowing training on large graphs. The model was evaluated in the realm of Holstein cattle milk yield prediction, outperforming state-of-the-art methods. We show that neighborhood aggregation improves performance, which illustrates the potential of graph based techniques. To the best of our knowledge, this is the first Geometric Deep Learning approach to this problem.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2023-04-24T01:17:44Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) HEEFL21.pdf: 963365 bytes, checksum: 1c066016e8e14876683d1f97f9c696fd (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2023-04-24T20:18:37Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) HEEFL21.pdf: 963365 bytes, checksum: 1c066016e8e14876683d1f97f9c696fd (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2023-04-26T14:55:05Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) HEEFL21.pdf: 963365 bytes, checksum: 1c066016e8e14876683d1f97f9c696fd (MD5) Previous issue date: 2021Este trabajo fue parcialmente financiado por el proyecto ANII FSDA 1-2018-1-154364.1 p.application/pdfenengCold Spring Harbor Laboratory (CSHL)Probabilistic Modeling in Genomics : Virtual Meeting, 14-16 apr 2021, Cold Spring Harbor, NY, USALas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Graphical modelsGNNGenomicsGraph Neural Networks for genome enabled prediction of complex traits.Pósterinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaHounie, IgnacioElenter, JuanEtchebarne, GuillermoFariello, María InésLecumberry, FedericoLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/36832/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/36832/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838782http://localhost:8080/xmlui/bitstream/20.500.12008/36832/3/license_texte8c30e04e865334cac2bfcba70aad8cbMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/36832/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALHEEFL21.pdfHEEFL21.pdfapplication/pdf963365http://localhost:8080/xmlui/bitstream/20.500.12008/36832/1/HEEFL21.pdf1c066016e8e14876683d1f97f9c696fdMD5120.500.12008/368322023-04-26 11:55:05.488oai:colibri.udelar.edu.uy:20.500.12008/36832VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:20.190458COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Graph Neural Networks for genome enabled prediction of complex traits. Hounie, Ignacio Graphical models GNN Genomics |
status_str | publishedVersion |
title | Graph Neural Networks for genome enabled prediction of complex traits. |
title_full | Graph Neural Networks for genome enabled prediction of complex traits. |
title_fullStr | Graph Neural Networks for genome enabled prediction of complex traits. |
title_full_unstemmed | Graph Neural Networks for genome enabled prediction of complex traits. |
title_short | Graph Neural Networks for genome enabled prediction of complex traits. |
title_sort | Graph Neural Networks for genome enabled prediction of complex traits. |
topic | Graphical models GNN Genomics |
url | https://meetings.cshl.edu/meetings.aspx?meet=PROBGEN&year=21 https://hdl.handle.net/20.500.12008/36832 |