Generalizaciones de la noción de bimonoide

Vilar del Valle, Sara

Resumen:

Este trabajo trata sobre generalizaciones categóricas de la noción de k-biálgebra. La generalización primera y conocida es la de bimonoide en una categoría monoidal trenzada. Las generalizaciones que existen y de las que trata la tesis parten de una mónada (como generalización del álgebra) y toman dos posibles caminos: Eliminar la hipótesis de la existencia de una trenza en la categoría de base. Esta corriente, la de [3] y [4] y [12], trabaja en el contexto de categorías monoidales (no necesariamente trenzadas) y considera functores comonoidales que son además mónadas, con ciertas relaciones de compatibilidad entre estas estructuras. Este camino da lugar a las llamadas mónadas comonoidales; de manera dual y análoga, se pueden considerar las llamadas comónadas monoidales como otra posible generalización (que parte de una comónada como generalización de la estructura de k-coálgebra). Eliminar la hipótesis de monoidal y considerar una transformación natural que ocupa el lugar de trenza (conocida como ley distributiva). Esto fue hecho en particular en [9], [10], [11] y [14]: los autores consideran una categoría cualquiera y modelan un bimonoide a través de un functor que es a la vez mónada y comónada y donde estas estructuras conviven bajo ciertas relaciones de compatibilidad que pueden ser enunciadas a través de la ley distributiva. Este camino da lugar a las llamadas bimónadas. En ambos contextos se tiene la noción extendida que agrega una antípoda (mónada comonoidal de Hopf y bimónada de Hopf respectivamente) y se generalizan resultados conocidos de la teoría de álgebras de Hopf. No consideraremos estas nociones en el presente trabajo. Este trabajo tiene por objetivo, además de recopilar ejemplos de mónadas y comónadas, revisar estas dos corrientes de generalización, presentando las definiciones, algunos resultados importantes y algunos ejemplos.


Detalles Bibliográficos
2016
K-biálgebra
Bimonoide
Generalizaciones categóricas
Álgebras de Hopf
Español
Universidad de la República
COLIBRI
http://hdl.handle.net/20.500.12008/8053
Acceso abierto
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
Resumen:
Sumario:Este trabajo trata sobre generalizaciones categóricas de la noción de k-biálgebra. La generalización primera y conocida es la de bimonoide en una categoría monoidal trenzada. Las generalizaciones que existen y de las que trata la tesis parten de una mónada (como generalización del álgebra) y toman dos posibles caminos: Eliminar la hipótesis de la existencia de una trenza en la categoría de base. Esta corriente, la de [3] y [4] y [12], trabaja en el contexto de categorías monoidales (no necesariamente trenzadas) y considera functores comonoidales que son además mónadas, con ciertas relaciones de compatibilidad entre estas estructuras. Este camino da lugar a las llamadas mónadas comonoidales; de manera dual y análoga, se pueden considerar las llamadas comónadas monoidales como otra posible generalización (que parte de una comónada como generalización de la estructura de k-coálgebra). Eliminar la hipótesis de monoidal y considerar una transformación natural que ocupa el lugar de trenza (conocida como ley distributiva). Esto fue hecho en particular en [9], [10], [11] y [14]: los autores consideran una categoría cualquiera y modelan un bimonoide a través de un functor que es a la vez mónada y comónada y donde estas estructuras conviven bajo ciertas relaciones de compatibilidad que pueden ser enunciadas a través de la ley distributiva. Este camino da lugar a las llamadas bimónadas. En ambos contextos se tiene la noción extendida que agrega una antípoda (mónada comonoidal de Hopf y bimónada de Hopf respectivamente) y se generalizan resultados conocidos de la teoría de álgebras de Hopf. No consideraremos estas nociones en el presente trabajo. Este trabajo tiene por objetivo, además de recopilar ejemplos de mónadas y comónadas, revisar estas dos corrientes de generalización, presentando las definiciones, algunos resultados importantes y algunos ejemplos.