Reconocimiento automático de configuraciones manuales propias de las lenguas de señas
Supervisor(es): Delbracio, Mauricio - Randall, Gregory
Resumen:
En este proyecto se presenta el estudio de un sistema de reconocimiento de configuraciones manuales propias de distintas lenguas de señas y la evaluación del mismo bajo diferentes condiciones. En el marco de este proyecto se estudiaron las características fundamentales de las lenguas de señas, esto es, aspectos vinculados a la semántica de una seña como así también a la gramática de este tipo de lenguas. Ello permitió tomar noción de la complejidad propia de este medio de comunicación, y por tanto, de la complejidad ligada a su reconocimiento automático. La revisión de la bibliografía asociada al Reconocimiento Automático de la Lengua de Señas (RALS) permitió conocer los grandes problemas en este campo, a saber (1) reconocimiento de deletreo manual, (2) reconocimiento de señas aisladas y (3) reconocimiento de discurso continuo, a los cuales se les puede agregar el requerimiento de que el sistema sea independiente del señante. En términos generales, se observó que el RALS es frecuentemente abordado mediante una cadena de procesamiento, compuesta por las siguientes etapas: sensado, preprocesamiento, extracción de características y clasificación. Durante este trabajo se estudiaron distintas variantes para la implementación de cada una de estas etapas, finalizando con la presentación de soluciones basadas en aprendizaje profundo. Dentro de los sistemas más ampliamente utilizados para el reconocimiento de patrones en imágenes aisladas se encuentran las redes neuronales convolucionales (CNN), las cuales se constituyen como redes neuronales de múltiples capas prealimentadas. La revisión de las bases de datos y las métricas de desempeño permitió tomar noción de los criterios y procedimientos seguidos para la adquisición de un corpus con una aplicación particular. Durante esta búsqueda no fue posible encontrar una base de datos de Lengua de Señas Uruguaya (LSU) para el reconocimiento automático. En virtud de ello, durante este trabajo se realizaron dos tareas. Por un lado, se conformó TReLSU-HS, una base de datos para el reconocimiento de configuraciones manuales propias de la LSU a partir de imágenes estáticas. Por otro lado, se sentaron las bases para la adquisición de una base de datos para el reconocimiento de LSU a nivel de seña, tomando un subconjunto de Léxico TReLSU como corpus de partida. Durante la etapa de implementación en el marco de esta tesis de maestría se trabajó sobre la reproducción de un sistema de RALS para el reconocimiento de configuraciones manuales a partir de imágenes estáticas. En particular, el sistema base utilizado fue Deep Hand, introducido en el artículo "Deep Hand: How to Train a CNN on 1 Million Hand Images When Your Data is Continuous and Weakly Labelled" de Koler y cols., en el cual se implementa y entrena una CNN para el reconocimiento de configuraciones manuales propias de la lengua de señas alemana. La metodología seguida para la evaluación de Deep Hand implicó la selección y, eventualmente, la conformación de distintas bases de datos representativas del problema, preprocesadas de acuerdo a los requerimientos de Deep Hand. En particular, sde trabajó sobre 4 bases de datos: una base de datos de prueba del sistema Deep Hand; dos bases de datos de deletreo manual, una de lengua de señas alemana y otra de lengua de señas americana; y TreLSU-HS, la cual se introdujo anteriormente. Sobre las bases de datos listadas, se evaluó el desempeño del sistema Deep Hand, brindando tasas de reconocimiento del orden del 30% o inferiores. Este hecho motivó la prueba de distintas variantes de aprendizaje por transferencia, en las cuales se llevó a cabo el entrenamiento de un clasificador SVM y por K vecinos más cercanos, obteniendo un desempeño del orden del 66% bajo un esquema independiente del señante, sobre una base de datos de lengua de señas alemana compuesta por 35 clases. Por su parte, las pruebas realizadas sobre TReLSU-HS mostraron un comportamiento fuertemente dependiente de la cantidad de muestras por clase, mostrando la importancia de contar con una base de datos balanceada para la implementación de un sistema para RALS uruguayo de utilidad práctica.
2019 | |
LENGUA DE SEÑAS RECONOCIMIENTO AUTOMATICO DE LA LENGUA DE SEÑAS |
|
Español | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/22463 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807523178488004608 |
---|---|
author | Stassi Danielli, Ariel Esteban |
author_facet | Stassi Danielli, Ariel Esteban |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a006180e3f5b2ad0b88185d14284c0e0 c4be27909b70efc3a2ead6cb7fc45395 9da0b6dfac957114c6a7714714b86306 26e8b538735f77fb71931ca8e9193386 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/22463/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/22463/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/22463/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/22463/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/22463/1/Sta19.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Stassi Danielli Ariel Esteban, Universidad de la República (Uruguay). Facultad de Ingeniería. |
dc.creator.advisor.none.fl_str_mv | Delbracio, Mauricio Randall, Gregory |
dc.creator.none.fl_str_mv | Stassi Danielli, Ariel Esteban |
dc.date.accessioned.none.fl_str_mv | 2019-11-20T18:49:55Z |
dc.date.available.none.fl_str_mv | 2019-11-20T18:49:55Z |
dc.date.issued.none.fl_str_mv | 2019 |
dc.description.abstract.none.fl_txt_mv | En este proyecto se presenta el estudio de un sistema de reconocimiento de configuraciones manuales propias de distintas lenguas de señas y la evaluación del mismo bajo diferentes condiciones. En el marco de este proyecto se estudiaron las características fundamentales de las lenguas de señas, esto es, aspectos vinculados a la semántica de una seña como así también a la gramática de este tipo de lenguas. Ello permitió tomar noción de la complejidad propia de este medio de comunicación, y por tanto, de la complejidad ligada a su reconocimiento automático. La revisión de la bibliografía asociada al Reconocimiento Automático de la Lengua de Señas (RALS) permitió conocer los grandes problemas en este campo, a saber (1) reconocimiento de deletreo manual, (2) reconocimiento de señas aisladas y (3) reconocimiento de discurso continuo, a los cuales se les puede agregar el requerimiento de que el sistema sea independiente del señante. En términos generales, se observó que el RALS es frecuentemente abordado mediante una cadena de procesamiento, compuesta por las siguientes etapas: sensado, preprocesamiento, extracción de características y clasificación. Durante este trabajo se estudiaron distintas variantes para la implementación de cada una de estas etapas, finalizando con la presentación de soluciones basadas en aprendizaje profundo. Dentro de los sistemas más ampliamente utilizados para el reconocimiento de patrones en imágenes aisladas se encuentran las redes neuronales convolucionales (CNN), las cuales se constituyen como redes neuronales de múltiples capas prealimentadas. La revisión de las bases de datos y las métricas de desempeño permitió tomar noción de los criterios y procedimientos seguidos para la adquisición de un corpus con una aplicación particular. Durante esta búsqueda no fue posible encontrar una base de datos de Lengua de Señas Uruguaya (LSU) para el reconocimiento automático. En virtud de ello, durante este trabajo se realizaron dos tareas. Por un lado, se conformó TReLSU-HS, una base de datos para el reconocimiento de configuraciones manuales propias de la LSU a partir de imágenes estáticas. Por otro lado, se sentaron las bases para la adquisición de una base de datos para el reconocimiento de LSU a nivel de seña, tomando un subconjunto de Léxico TReLSU como corpus de partida. Durante la etapa de implementación en el marco de esta tesis de maestría se trabajó sobre la reproducción de un sistema de RALS para el reconocimiento de configuraciones manuales a partir de imágenes estáticas. En particular, el sistema base utilizado fue Deep Hand, introducido en el artículo "Deep Hand: How to Train a CNN on 1 Million Hand Images When Your Data is Continuous and Weakly Labelled" de Koler y cols., en el cual se implementa y entrena una CNN para el reconocimiento de configuraciones manuales propias de la lengua de señas alemana. La metodología seguida para la evaluación de Deep Hand implicó la selección y, eventualmente, la conformación de distintas bases de datos representativas del problema, preprocesadas de acuerdo a los requerimientos de Deep Hand. En particular, sde trabajó sobre 4 bases de datos: una base de datos de prueba del sistema Deep Hand; dos bases de datos de deletreo manual, una de lengua de señas alemana y otra de lengua de señas americana; y TreLSU-HS, la cual se introdujo anteriormente. Sobre las bases de datos listadas, se evaluó el desempeño del sistema Deep Hand, brindando tasas de reconocimiento del orden del 30% o inferiores. Este hecho motivó la prueba de distintas variantes de aprendizaje por transferencia, en las cuales se llevó a cabo el entrenamiento de un clasificador SVM y por K vecinos más cercanos, obteniendo un desempeño del orden del 66% bajo un esquema independiente del señante, sobre una base de datos de lengua de señas alemana compuesta por 35 clases. Por su parte, las pruebas realizadas sobre TReLSU-HS mostraron un comportamiento fuertemente dependiente de la cantidad de muestras por clase, mostrando la importancia de contar con una base de datos balanceada para la implementación de un sistema para RALS uruguayo de utilidad práctica. |
dc.format.extent.es.fl_str_mv | 156 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Stassi Danielli, A. Reconocimiento automático de configuraciones manuales propias de las lenguas de señas [en línea]. Tesis de maestría. Montevideo : Udelar. FI, 2019. |
dc.identifier.issn.none.fl_str_mv | 1688-2792 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/22463 |
dc.language.iso.none.fl_str_mv | es spa |
dc.publisher.es.fl_str_mv | Udelar.FI |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.other.es.fl_str_mv | LENGUA DE SEÑAS RECONOCIMIENTO AUTOMATICO DE LA LENGUA DE SEÑAS |
dc.title.none.fl_str_mv | Reconocimiento automático de configuraciones manuales propias de las lenguas de señas |
dc.type.es.fl_str_mv | Tesis de maestría |
dc.type.none.fl_str_mv | info:eu-repo/semantics/masterThesis |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/acceptedVersion |
description | En este proyecto se presenta el estudio de un sistema de reconocimiento de configuraciones manuales propias de distintas lenguas de señas y la evaluación del mismo bajo diferentes condiciones. En el marco de este proyecto se estudiaron las características fundamentales de las lenguas de señas, esto es, aspectos vinculados a la semántica de una seña como así también a la gramática de este tipo de lenguas. Ello permitió tomar noción de la complejidad propia de este medio de comunicación, y por tanto, de la complejidad ligada a su reconocimiento automático. La revisión de la bibliografía asociada al Reconocimiento Automático de la Lengua de Señas (RALS) permitió conocer los grandes problemas en este campo, a saber (1) reconocimiento de deletreo manual, (2) reconocimiento de señas aisladas y (3) reconocimiento de discurso continuo, a los cuales se les puede agregar el requerimiento de que el sistema sea independiente del señante. En términos generales, se observó que el RALS es frecuentemente abordado mediante una cadena de procesamiento, compuesta por las siguientes etapas: sensado, preprocesamiento, extracción de características y clasificación. Durante este trabajo se estudiaron distintas variantes para la implementación de cada una de estas etapas, finalizando con la presentación de soluciones basadas en aprendizaje profundo. Dentro de los sistemas más ampliamente utilizados para el reconocimiento de patrones en imágenes aisladas se encuentran las redes neuronales convolucionales (CNN), las cuales se constituyen como redes neuronales de múltiples capas prealimentadas. La revisión de las bases de datos y las métricas de desempeño permitió tomar noción de los criterios y procedimientos seguidos para la adquisición de un corpus con una aplicación particular. Durante esta búsqueda no fue posible encontrar una base de datos de Lengua de Señas Uruguaya (LSU) para el reconocimiento automático. En virtud de ello, durante este trabajo se realizaron dos tareas. Por un lado, se conformó TReLSU-HS, una base de datos para el reconocimiento de configuraciones manuales propias de la LSU a partir de imágenes estáticas. Por otro lado, se sentaron las bases para la adquisición de una base de datos para el reconocimiento de LSU a nivel de seña, tomando un subconjunto de Léxico TReLSU como corpus de partida. Durante la etapa de implementación en el marco de esta tesis de maestría se trabajó sobre la reproducción de un sistema de RALS para el reconocimiento de configuraciones manuales a partir de imágenes estáticas. En particular, el sistema base utilizado fue Deep Hand, introducido en el artículo "Deep Hand: How to Train a CNN on 1 Million Hand Images When Your Data is Continuous and Weakly Labelled" de Koler y cols., en el cual se implementa y entrena una CNN para el reconocimiento de configuraciones manuales propias de la lengua de señas alemana. La metodología seguida para la evaluación de Deep Hand implicó la selección y, eventualmente, la conformación de distintas bases de datos representativas del problema, preprocesadas de acuerdo a los requerimientos de Deep Hand. En particular, sde trabajó sobre 4 bases de datos: una base de datos de prueba del sistema Deep Hand; dos bases de datos de deletreo manual, una de lengua de señas alemana y otra de lengua de señas americana; y TreLSU-HS, la cual se introdujo anteriormente. Sobre las bases de datos listadas, se evaluó el desempeño del sistema Deep Hand, brindando tasas de reconocimiento del orden del 30% o inferiores. Este hecho motivó la prueba de distintas variantes de aprendizaje por transferencia, en las cuales se llevó a cabo el entrenamiento de un clasificador SVM y por K vecinos más cercanos, obteniendo un desempeño del orden del 66% bajo un esquema independiente del señante, sobre una base de datos de lengua de señas alemana compuesta por 35 clases. Por su parte, las pruebas realizadas sobre TReLSU-HS mostraron un comportamiento fuertemente dependiente de la cantidad de muestras por clase, mostrando la importancia de contar con una base de datos balanceada para la implementación de un sistema para RALS uruguayo de utilidad práctica. |
eu_rights_str_mv | openAccess |
format | masterThesis |
id | COLIBRI_f3433803941202985dce68c537a3b872 |
identifier_str_mv | Stassi Danielli, A. Reconocimiento automático de configuraciones manuales propias de las lenguas de señas [en línea]. Tesis de maestría. Montevideo : Udelar. FI, 2019. 1688-2792 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | spa |
language_invalid_str_mv | es |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/22463 |
publishDate | 2019 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | Stassi Danielli Ariel Esteban, Universidad de la República (Uruguay). Facultad de Ingeniería.2019-11-20T18:49:55Z2019-11-20T18:49:55Z2019Stassi Danielli, A. Reconocimiento automático de configuraciones manuales propias de las lenguas de señas [en línea]. Tesis de maestría. Montevideo : Udelar. FI, 2019.1688-2792https://hdl.handle.net/20.500.12008/22463En este proyecto se presenta el estudio de un sistema de reconocimiento de configuraciones manuales propias de distintas lenguas de señas y la evaluación del mismo bajo diferentes condiciones. En el marco de este proyecto se estudiaron las características fundamentales de las lenguas de señas, esto es, aspectos vinculados a la semántica de una seña como así también a la gramática de este tipo de lenguas. Ello permitió tomar noción de la complejidad propia de este medio de comunicación, y por tanto, de la complejidad ligada a su reconocimiento automático. La revisión de la bibliografía asociada al Reconocimiento Automático de la Lengua de Señas (RALS) permitió conocer los grandes problemas en este campo, a saber (1) reconocimiento de deletreo manual, (2) reconocimiento de señas aisladas y (3) reconocimiento de discurso continuo, a los cuales se les puede agregar el requerimiento de que el sistema sea independiente del señante. En términos generales, se observó que el RALS es frecuentemente abordado mediante una cadena de procesamiento, compuesta por las siguientes etapas: sensado, preprocesamiento, extracción de características y clasificación. Durante este trabajo se estudiaron distintas variantes para la implementación de cada una de estas etapas, finalizando con la presentación de soluciones basadas en aprendizaje profundo. Dentro de los sistemas más ampliamente utilizados para el reconocimiento de patrones en imágenes aisladas se encuentran las redes neuronales convolucionales (CNN), las cuales se constituyen como redes neuronales de múltiples capas prealimentadas. La revisión de las bases de datos y las métricas de desempeño permitió tomar noción de los criterios y procedimientos seguidos para la adquisición de un corpus con una aplicación particular. Durante esta búsqueda no fue posible encontrar una base de datos de Lengua de Señas Uruguaya (LSU) para el reconocimiento automático. En virtud de ello, durante este trabajo se realizaron dos tareas. Por un lado, se conformó TReLSU-HS, una base de datos para el reconocimiento de configuraciones manuales propias de la LSU a partir de imágenes estáticas. Por otro lado, se sentaron las bases para la adquisición de una base de datos para el reconocimiento de LSU a nivel de seña, tomando un subconjunto de Léxico TReLSU como corpus de partida. Durante la etapa de implementación en el marco de esta tesis de maestría se trabajó sobre la reproducción de un sistema de RALS para el reconocimiento de configuraciones manuales a partir de imágenes estáticas. En particular, el sistema base utilizado fue Deep Hand, introducido en el artículo "Deep Hand: How to Train a CNN on 1 Million Hand Images When Your Data is Continuous and Weakly Labelled" de Koler y cols., en el cual se implementa y entrena una CNN para el reconocimiento de configuraciones manuales propias de la lengua de señas alemana. La metodología seguida para la evaluación de Deep Hand implicó la selección y, eventualmente, la conformación de distintas bases de datos representativas del problema, preprocesadas de acuerdo a los requerimientos de Deep Hand. En particular, sde trabajó sobre 4 bases de datos: una base de datos de prueba del sistema Deep Hand; dos bases de datos de deletreo manual, una de lengua de señas alemana y otra de lengua de señas americana; y TreLSU-HS, la cual se introdujo anteriormente. Sobre las bases de datos listadas, se evaluó el desempeño del sistema Deep Hand, brindando tasas de reconocimiento del orden del 30% o inferiores. Este hecho motivó la prueba de distintas variantes de aprendizaje por transferencia, en las cuales se llevó a cabo el entrenamiento de un clasificador SVM y por K vecinos más cercanos, obteniendo un desempeño del orden del 66% bajo un esquema independiente del señante, sobre una base de datos de lengua de señas alemana compuesta por 35 clases. Por su parte, las pruebas realizadas sobre TReLSU-HS mostraron un comportamiento fuertemente dependiente de la cantidad de muestras por clase, mostrando la importancia de contar con una base de datos balanceada para la implementación de un sistema para RALS uruguayo de utilidad práctica.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2019-11-11T17:00:19Z No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Sta19.pdf: 24066391 bytes, checksum: 26e8b538735f77fb71931ca8e9193386 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2019-11-20T18:36:48Z (GMT) No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Sta19.pdf: 24066391 bytes, checksum: 26e8b538735f77fb71931ca8e9193386 (MD5)Made available in DSpace on 2019-11-20T18:49:55Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Sta19.pdf: 24066391 bytes, checksum: 26e8b538735f77fb71931ca8e9193386 (MD5) Previous issue date: 2019156 p.application/pdfesspaUdelar.FILas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)LENGUA DE SEÑASRECONOCIMIENTO AUTOMATICO DE LA LENGUA DE SEÑASReconocimiento automático de configuraciones manuales propias de las lenguas de señasTesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaStassi Danielli, Ariel EstebanDelbracio, MauricioRandall, GregoryUniversidad de la República (Uruguay). Facultad de Ingeniería.Magíster en Ingeniería (Ingeniería Eléctrica)LICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/22463/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/22463/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838520http://localhost:8080/xmlui/bitstream/20.500.12008/22463/3/license_textc4be27909b70efc3a2ead6cb7fc45395MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://localhost:8080/xmlui/bitstream/20.500.12008/22463/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALSta19.pdfSta19.pdfapplication/pdf24066391http://localhost:8080/xmlui/bitstream/20.500.12008/22463/1/Sta19.pdf26e8b538735f77fb71931ca8e9193386MD5120.500.12008/224632019-11-20 15:49:55.718oai:colibri.udelar.edu.uy:20.500.12008/22463VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:17.007733COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Reconocimiento automático de configuraciones manuales propias de las lenguas de señas Stassi Danielli, Ariel Esteban LENGUA DE SEÑAS RECONOCIMIENTO AUTOMATICO DE LA LENGUA DE SEÑAS |
status_str | acceptedVersion |
title | Reconocimiento automático de configuraciones manuales propias de las lenguas de señas |
title_full | Reconocimiento automático de configuraciones manuales propias de las lenguas de señas |
title_fullStr | Reconocimiento automático de configuraciones manuales propias de las lenguas de señas |
title_full_unstemmed | Reconocimiento automático de configuraciones manuales propias de las lenguas de señas |
title_short | Reconocimiento automático de configuraciones manuales propias de las lenguas de señas |
title_sort | Reconocimiento automático de configuraciones manuales propias de las lenguas de señas |
topic | LENGUA DE SEÑAS RECONOCIMIENTO AUTOMATICO DE LA LENGUA DE SEÑAS |
url | https://hdl.handle.net/20.500.12008/22463 |