Particionamiento óptimo de matrices dispersas
Supervisor(es): Dufrechou, Ernesto - Ezzatti, Pablo
Resumen:
Las matrices dispersas tienen múltiples aplicaciones en el ámbito de la ciencia y la ingeniería, ya que son una herramienta fundamental para la resolución de problemas de gran escala que no pueden ser modelados por matrices densas como, por ejemplo, las simulaciones de circuitos electrónicos, la resolución de ecuaciones diferenciales parciales utilizando FEM, o incluso operaciones con grafos de redes sociales. La creciente importancia de las matrices dispersas para la comunidad científica motiva el estudio de técnicas que permitan el manejo eficiente, tanto del almacenamiento como del cómputo de las operaciones asociadas con este tipo de matrices. En general, estas técnicas buscan reducir el tráfico de datos con la memoria principal mediante formatos de almacenamiento que permitan ubicar los elementos no nulos dentro de la matriz transfiriendo la menor cantidad de datos posibles. El objetivo principal de este proyecto es avanzar en el estudio y comprensión de estas estrategias. En particular, se evalúan estrategias de particionamiento y procesamiento de matrices para el uso eficiente de técnicas de almacenamiento centradas, principalmente, en la aplicación de reordenamientos, el uso de múltiples precisiones para almacenar los índices de los elementos no nulos y formatos híbridos que permitan almacenar la matriz mediante una parte regular, en general densa, y una parte irregular dispersa. El trabajo incluye, en primer lugar, la actualización del estado del arte respecto a formatos de almacenamiento disperso. Luego se desarrollaron un conjunto de heurísticas que tienen por objetivo optimizar el espacio de almacenamiento de las matrices dispersas mediante el particionamiento de las mismas, alcanzando resultados alentadores. Por último, se extendió la evaluación experimental midiendo el impacto de la compresión de índices luego de aplicar los reordenamientos. Este estudio permitió identificar los importantes ahorros en cuanto a espacio de almacenamiento que se pueden obtener al comprimir índices y, además, resaltó la importancia de combinar estrategias de reordenamiento para dicha tarea.
2021 | |
Matrices dispersas Almacenamiento óptimo Reordenamiento Múltiples precisiones |
|
Español | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/26981 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807523226491813888 |
---|---|
author | Marichal, Raúl Ignacio |
author_facet | Marichal, Raúl Ignacio |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a006180e3f5b2ad0b88185d14284c0e0 36c32e9c6da50e6d55578c16944ef7f6 1996b8461bc290aef6a27d78c67b6b52 99b17b0ae5ec88a760983ae12fcfc6ce |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/26981/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/26981/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/26981/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/26981/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/26981/1/MAR21.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Marichal Raúl Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería |
dc.creator.advisor.none.fl_str_mv | Dufrechou, Ernesto Ezzatti, Pablo |
dc.creator.none.fl_str_mv | Marichal, Raúl Ignacio |
dc.date.accessioned.none.fl_str_mv | 2021-04-08T13:45:59Z |
dc.date.available.none.fl_str_mv | 2021-04-08T13:45:59Z |
dc.date.issued.none.fl_str_mv | 2021 |
dc.description.abstract.none.fl_txt_mv | Las matrices dispersas tienen múltiples aplicaciones en el ámbito de la ciencia y la ingeniería, ya que son una herramienta fundamental para la resolución de problemas de gran escala que no pueden ser modelados por matrices densas como, por ejemplo, las simulaciones de circuitos electrónicos, la resolución de ecuaciones diferenciales parciales utilizando FEM, o incluso operaciones con grafos de redes sociales. La creciente importancia de las matrices dispersas para la comunidad científica motiva el estudio de técnicas que permitan el manejo eficiente, tanto del almacenamiento como del cómputo de las operaciones asociadas con este tipo de matrices. En general, estas técnicas buscan reducir el tráfico de datos con la memoria principal mediante formatos de almacenamiento que permitan ubicar los elementos no nulos dentro de la matriz transfiriendo la menor cantidad de datos posibles. El objetivo principal de este proyecto es avanzar en el estudio y comprensión de estas estrategias. En particular, se evalúan estrategias de particionamiento y procesamiento de matrices para el uso eficiente de técnicas de almacenamiento centradas, principalmente, en la aplicación de reordenamientos, el uso de múltiples precisiones para almacenar los índices de los elementos no nulos y formatos híbridos que permitan almacenar la matriz mediante una parte regular, en general densa, y una parte irregular dispersa. El trabajo incluye, en primer lugar, la actualización del estado del arte respecto a formatos de almacenamiento disperso. Luego se desarrollaron un conjunto de heurísticas que tienen por objetivo optimizar el espacio de almacenamiento de las matrices dispersas mediante el particionamiento de las mismas, alcanzando resultados alentadores. Por último, se extendió la evaluación experimental midiendo el impacto de la compresión de índices luego de aplicar los reordenamientos. Este estudio permitió identificar los importantes ahorros en cuanto a espacio de almacenamiento que se pueden obtener al comprimir índices y, además, resaltó la importancia de combinar estrategias de reordenamiento para dicha tarea. |
dc.format.extent.es.fl_str_mv | 91 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Marichal, R. Particionamiento óptimo de matrices dispersas [en línea]. Tesis de grado. Montevideo : Udelar. FI. INCO, 2021. |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/26981 |
dc.language.iso.none.fl_str_mv | es spa |
dc.publisher.es.fl_str_mv | Udelar.FI |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Matrices dispersas Almacenamiento óptimo Reordenamiento Múltiples precisiones |
dc.title.none.fl_str_mv | Particionamiento óptimo de matrices dispersas |
dc.type.es.fl_str_mv | Tesis de grado |
dc.type.none.fl_str_mv | info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/acceptedVersion |
description | Las matrices dispersas tienen múltiples aplicaciones en el ámbito de la ciencia y la ingeniería, ya que son una herramienta fundamental para la resolución de problemas de gran escala que no pueden ser modelados por matrices densas como, por ejemplo, las simulaciones de circuitos electrónicos, la resolución de ecuaciones diferenciales parciales utilizando FEM, o incluso operaciones con grafos de redes sociales. La creciente importancia de las matrices dispersas para la comunidad científica motiva el estudio de técnicas que permitan el manejo eficiente, tanto del almacenamiento como del cómputo de las operaciones asociadas con este tipo de matrices. En general, estas técnicas buscan reducir el tráfico de datos con la memoria principal mediante formatos de almacenamiento que permitan ubicar los elementos no nulos dentro de la matriz transfiriendo la menor cantidad de datos posibles. El objetivo principal de este proyecto es avanzar en el estudio y comprensión de estas estrategias. En particular, se evalúan estrategias de particionamiento y procesamiento de matrices para el uso eficiente de técnicas de almacenamiento centradas, principalmente, en la aplicación de reordenamientos, el uso de múltiples precisiones para almacenar los índices de los elementos no nulos y formatos híbridos que permitan almacenar la matriz mediante una parte regular, en general densa, y una parte irregular dispersa. El trabajo incluye, en primer lugar, la actualización del estado del arte respecto a formatos de almacenamiento disperso. Luego se desarrollaron un conjunto de heurísticas que tienen por objetivo optimizar el espacio de almacenamiento de las matrices dispersas mediante el particionamiento de las mismas, alcanzando resultados alentadores. Por último, se extendió la evaluación experimental midiendo el impacto de la compresión de índices luego de aplicar los reordenamientos. Este estudio permitió identificar los importantes ahorros en cuanto a espacio de almacenamiento que se pueden obtener al comprimir índices y, además, resaltó la importancia de combinar estrategias de reordenamiento para dicha tarea. |
eu_rights_str_mv | openAccess |
format | bachelorThesis |
id | COLIBRI_f2721596ff0689ff802efa5e6d77ce23 |
identifier_str_mv | Marichal, R. Particionamiento óptimo de matrices dispersas [en línea]. Tesis de grado. Montevideo : Udelar. FI. INCO, 2021. |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | spa |
language_invalid_str_mv | es |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/26981 |
publishDate | 2021 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | Marichal Raúl Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería2021-04-08T13:45:59Z2021-04-08T13:45:59Z2021Marichal, R. Particionamiento óptimo de matrices dispersas [en línea]. Tesis de grado. Montevideo : Udelar. FI. INCO, 2021.https://hdl.handle.net/20.500.12008/26981Las matrices dispersas tienen múltiples aplicaciones en el ámbito de la ciencia y la ingeniería, ya que son una herramienta fundamental para la resolución de problemas de gran escala que no pueden ser modelados por matrices densas como, por ejemplo, las simulaciones de circuitos electrónicos, la resolución de ecuaciones diferenciales parciales utilizando FEM, o incluso operaciones con grafos de redes sociales. La creciente importancia de las matrices dispersas para la comunidad científica motiva el estudio de técnicas que permitan el manejo eficiente, tanto del almacenamiento como del cómputo de las operaciones asociadas con este tipo de matrices. En general, estas técnicas buscan reducir el tráfico de datos con la memoria principal mediante formatos de almacenamiento que permitan ubicar los elementos no nulos dentro de la matriz transfiriendo la menor cantidad de datos posibles. El objetivo principal de este proyecto es avanzar en el estudio y comprensión de estas estrategias. En particular, se evalúan estrategias de particionamiento y procesamiento de matrices para el uso eficiente de técnicas de almacenamiento centradas, principalmente, en la aplicación de reordenamientos, el uso de múltiples precisiones para almacenar los índices de los elementos no nulos y formatos híbridos que permitan almacenar la matriz mediante una parte regular, en general densa, y una parte irregular dispersa. El trabajo incluye, en primer lugar, la actualización del estado del arte respecto a formatos de almacenamiento disperso. Luego se desarrollaron un conjunto de heurísticas que tienen por objetivo optimizar el espacio de almacenamiento de las matrices dispersas mediante el particionamiento de las mismas, alcanzando resultados alentadores. Por último, se extendió la evaluación experimental midiendo el impacto de la compresión de índices luego de aplicar los reordenamientos. Este estudio permitió identificar los importantes ahorros en cuanto a espacio de almacenamiento que se pueden obtener al comprimir índices y, además, resaltó la importancia de combinar estrategias de reordenamiento para dicha tarea.Submitted by Cabrera Gabriela (gfcabrerarossi@gmail.com) on 2021-04-06T21:23:47Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) MAR21.pdf: 4889807 bytes, checksum: 99b17b0ae5ec88a760983ae12fcfc6ce (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2021-04-08T13:33:53Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) MAR21.pdf: 4889807 bytes, checksum: 99b17b0ae5ec88a760983ae12fcfc6ce (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@fic.edu.uy) on 2021-04-08T13:45:59Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) MAR21.pdf: 4889807 bytes, checksum: 99b17b0ae5ec88a760983ae12fcfc6ce (MD5) Previous issue date: 202191 p.application/pdfesspaUdelar.FILas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Matrices dispersasAlmacenamiento óptimoReordenamientoMúltiples precisionesParticionamiento óptimo de matrices dispersasTesis de gradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaMarichal, Raúl IgnacioDufrechou, ErnestoEzzatti, PabloUniversidad de la República (Uruguay). Facultad de IngenieríaIngeniero en ComputaciónLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/26981/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/26981/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/26981/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/26981/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALMAR21.pdfMAR21.pdfapplication/pdf4889807http://localhost:8080/xmlui/bitstream/20.500.12008/26981/1/MAR21.pdf99b17b0ae5ec88a760983ae12fcfc6ceMD5120.500.12008/269812024-04-12 14:06:40.2oai:colibri.udelar.edu.uy:20.500.12008/26981VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:46:21.894803COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Particionamiento óptimo de matrices dispersas Marichal, Raúl Ignacio Matrices dispersas Almacenamiento óptimo Reordenamiento Múltiples precisiones |
status_str | acceptedVersion |
title | Particionamiento óptimo de matrices dispersas |
title_full | Particionamiento óptimo de matrices dispersas |
title_fullStr | Particionamiento óptimo de matrices dispersas |
title_full_unstemmed | Particionamiento óptimo de matrices dispersas |
title_short | Particionamiento óptimo de matrices dispersas |
title_sort | Particionamiento óptimo de matrices dispersas |
topic | Matrices dispersas Almacenamiento óptimo Reordenamiento Múltiples precisiones |
url | https://hdl.handle.net/20.500.12008/26981 |