DNAI : Machine learning for genome enabled prediction of complex traits in agriculture

Elenter, Juan - Etchebarne, Guillermo - Hounie, Ignacio

Supervisor(es): Fariello, María Inés - Lecumberry, Federico

Resumen:

Genome enabled prediction of complex traits aims to predict a measurable characteristic of an organism using their genetic information. In the present work we address diverse traits and organisms including yeast growth, wheat yield, Jersey bull fertility and Holstein cattle milk yield. We benchmark several popular Machine Learning models: bayesian and penalized linear regressions, kernel methods, and decision tree ensembles. Through exhaustive hyperparameter tuning we outperform state-of-the-art results in most datasets. We also compare two codification techniques for input data and perform ablation studies to assess robustness to genetic marker - i.e input features - elimination. We then explore different Deep Learning architectures for this task. We propose and evaluate CNN architectures, showing that using residual connections improves perfomance but that in some cases Fully Connected Networks outperform CNNs. We link this to the fact that absolute positions are relevant in genomes, and thus, CNN's translational equivariance may not be an adequate inductive bias for tackling this problem. In addition, we explore using PCA and TSNE for mapping input features to two-dimensional image-like feature maps used as inputs to 2D-CNN architectures. We assess the effectiveness of the aforementioned dimensionality reduction techniques when used to construct those mappings, and find that in some cases, using random mappings performs comparably. We also propose a method to construct these image-like feature maps based on an approximation to the Fermat distance. Furthermore, we evaluate graph neural network architectures by formulating trait prediction as a node regression problem on a population graph, where each node represents an individual, and edges association between their genetic information. We evaluate the transferability of these graphical models and find that the extent to which they exploit neighbourhood information is limited. We also propose a model combining CNN and GNN architectures, which outperforms all other models in Holstein cattle milk yield prediction. Lastly, we propose optimising Pearson correlation directly, which is commonly used to evaluate model performance, but MSE is usually minimised. Although this loss does not penalise learning an affine transformation of actual phenotypes, we show that this affine transformation can be estimated from train data, and leads to models with both lower MSE and higher predictive correlations.


Detalles Bibliográficos
2021
Aprendizaje profundo
Predicción genómica
Redes neuronales
Grafos
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/28582
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523105226096640
author Elenter, Juan
author2 Etchebarne, Guillermo
Hounie, Ignacio
author2_role author
author
author_facet Elenter, Juan
Etchebarne, Guillermo
Hounie, Ignacio
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
36c32e9c6da50e6d55578c16944ef7f6
1996b8461bc290aef6a27d78c67b6b52
6205219c9cd9f1ee60303ac2fbbc5df2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/28582/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/28582/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/28582/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/28582/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/28582/1/EEH21.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Elenter Juan, Universidad de la República (Uruguay). Facultad de Ingeniería.
Etchebarne Guillermo, Universidad de la República (Uruguay). Facultad de Ingeniería.
Hounie Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creator.advisor.none.fl_str_mv Fariello, María Inés
Lecumberry, Federico
dc.creator.none.fl_str_mv Elenter, Juan
Etchebarne, Guillermo
Hounie, Ignacio
dc.date.accessioned.none.fl_str_mv 2021-07-15T17:00:31Z
dc.date.available.none.fl_str_mv 2021-07-15T17:00:31Z
dc.date.issued.none.fl_str_mv 2021
dc.description.abstract.none.fl_txt_mv Genome enabled prediction of complex traits aims to predict a measurable characteristic of an organism using their genetic information. In the present work we address diverse traits and organisms including yeast growth, wheat yield, Jersey bull fertility and Holstein cattle milk yield. We benchmark several popular Machine Learning models: bayesian and penalized linear regressions, kernel methods, and decision tree ensembles. Through exhaustive hyperparameter tuning we outperform state-of-the-art results in most datasets. We also compare two codification techniques for input data and perform ablation studies to assess robustness to genetic marker - i.e input features - elimination. We then explore different Deep Learning architectures for this task. We propose and evaluate CNN architectures, showing that using residual connections improves perfomance but that in some cases Fully Connected Networks outperform CNNs. We link this to the fact that absolute positions are relevant in genomes, and thus, CNN's translational equivariance may not be an adequate inductive bias for tackling this problem. In addition, we explore using PCA and TSNE for mapping input features to two-dimensional image-like feature maps used as inputs to 2D-CNN architectures. We assess the effectiveness of the aforementioned dimensionality reduction techniques when used to construct those mappings, and find that in some cases, using random mappings performs comparably. We also propose a method to construct these image-like feature maps based on an approximation to the Fermat distance. Furthermore, we evaluate graph neural network architectures by formulating trait prediction as a node regression problem on a population graph, where each node represents an individual, and edges association between their genetic information. We evaluate the transferability of these graphical models and find that the extent to which they exploit neighbourhood information is limited. We also propose a model combining CNN and GNN architectures, which outperforms all other models in Holstein cattle milk yield prediction. Lastly, we propose optimising Pearson correlation directly, which is commonly used to evaluate model performance, but MSE is usually minimised. Although this loss does not penalise learning an affine transformation of actual phenotypes, we show that this affine transformation can be estimated from train data, and leads to models with both lower MSE and higher predictive correlations.
dc.format.extent.es.fl_str_mv 191 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Elenter, J., Etchebarne, G. y Hounie, I. DNAI : Machine learning for genome enabled prediction of complex traits in agriculture [en línea]. Tesis de grado. Montevideo : Udelar. FI. IIE, 2021.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/28582
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv Udelar.FI.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Aprendizaje profundo
Predicción genómica
Redes neuronales
Grafos
dc.title.none.fl_str_mv DNAI : Machine learning for genome enabled prediction of complex traits in agriculture
dc.type.es.fl_str_mv Tesis de grado
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description Genome enabled prediction of complex traits aims to predict a measurable characteristic of an organism using their genetic information. In the present work we address diverse traits and organisms including yeast growth, wheat yield, Jersey bull fertility and Holstein cattle milk yield. We benchmark several popular Machine Learning models: bayesian and penalized linear regressions, kernel methods, and decision tree ensembles. Through exhaustive hyperparameter tuning we outperform state-of-the-art results in most datasets. We also compare two codification techniques for input data and perform ablation studies to assess robustness to genetic marker - i.e input features - elimination. We then explore different Deep Learning architectures for this task. We propose and evaluate CNN architectures, showing that using residual connections improves perfomance but that in some cases Fully Connected Networks outperform CNNs. We link this to the fact that absolute positions are relevant in genomes, and thus, CNN's translational equivariance may not be an adequate inductive bias for tackling this problem. In addition, we explore using PCA and TSNE for mapping input features to two-dimensional image-like feature maps used as inputs to 2D-CNN architectures. We assess the effectiveness of the aforementioned dimensionality reduction techniques when used to construct those mappings, and find that in some cases, using random mappings performs comparably. We also propose a method to construct these image-like feature maps based on an approximation to the Fermat distance. Furthermore, we evaluate graph neural network architectures by formulating trait prediction as a node regression problem on a population graph, where each node represents an individual, and edges association between their genetic information. We evaluate the transferability of these graphical models and find that the extent to which they exploit neighbourhood information is limited. We also propose a model combining CNN and GNN architectures, which outperforms all other models in Holstein cattle milk yield prediction. Lastly, we propose optimising Pearson correlation directly, which is commonly used to evaluate model performance, but MSE is usually minimised. Although this loss does not penalise learning an affine transformation of actual phenotypes, we show that this affine transformation can be estimated from train data, and leads to models with both lower MSE and higher predictive correlations.
eu_rights_str_mv openAccess
format bachelorThesis
id COLIBRI_f237d74900fd8e9725edc5063221b5ed
identifier_str_mv Elenter, J., Etchebarne, G. y Hounie, I. DNAI : Machine learning for genome enabled prediction of complex traits in agriculture [en línea]. Tesis de grado. Montevideo : Udelar. FI. IIE, 2021.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/28582
publishDate 2021
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Elenter Juan, Universidad de la República (Uruguay). Facultad de Ingeniería.Etchebarne Guillermo, Universidad de la República (Uruguay). Facultad de Ingeniería.Hounie Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería.2021-07-15T17:00:31Z2021-07-15T17:00:31Z2021Elenter, J., Etchebarne, G. y Hounie, I. DNAI : Machine learning for genome enabled prediction of complex traits in agriculture [en línea]. Tesis de grado. Montevideo : Udelar. FI. IIE, 2021.https://hdl.handle.net/20.500.12008/28582Genome enabled prediction of complex traits aims to predict a measurable characteristic of an organism using their genetic information. In the present work we address diverse traits and organisms including yeast growth, wheat yield, Jersey bull fertility and Holstein cattle milk yield. We benchmark several popular Machine Learning models: bayesian and penalized linear regressions, kernel methods, and decision tree ensembles. Through exhaustive hyperparameter tuning we outperform state-of-the-art results in most datasets. We also compare two codification techniques for input data and perform ablation studies to assess robustness to genetic marker - i.e input features - elimination. We then explore different Deep Learning architectures for this task. We propose and evaluate CNN architectures, showing that using residual connections improves perfomance but that in some cases Fully Connected Networks outperform CNNs. We link this to the fact that absolute positions are relevant in genomes, and thus, CNN's translational equivariance may not be an adequate inductive bias for tackling this problem. In addition, we explore using PCA and TSNE for mapping input features to two-dimensional image-like feature maps used as inputs to 2D-CNN architectures. We assess the effectiveness of the aforementioned dimensionality reduction techniques when used to construct those mappings, and find that in some cases, using random mappings performs comparably. We also propose a method to construct these image-like feature maps based on an approximation to the Fermat distance. Furthermore, we evaluate graph neural network architectures by formulating trait prediction as a node regression problem on a population graph, where each node represents an individual, and edges association between their genetic information. We evaluate the transferability of these graphical models and find that the extent to which they exploit neighbourhood information is limited. We also propose a model combining CNN and GNN architectures, which outperforms all other models in Holstein cattle milk yield prediction. Lastly, we propose optimising Pearson correlation directly, which is commonly used to evaluate model performance, but MSE is usually minimised. Although this loss does not penalise learning an affine transformation of actual phenotypes, we show that this affine transformation can be estimated from train data, and leads to models with both lower MSE and higher predictive correlations.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2021-07-14T21:48:42Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) EEH21.pdf: 36023283 bytes, checksum: 6205219c9cd9f1ee60303ac2fbbc5df2 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2021-07-15T15:19:19Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) EEH21.pdf: 36023283 bytes, checksum: 6205219c9cd9f1ee60303ac2fbbc5df2 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2021-07-15T17:00:31Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) EEH21.pdf: 36023283 bytes, checksum: 6205219c9cd9f1ee60303ac2fbbc5df2 (MD5) Previous issue date: 2021191 p.application/pdfenengUdelar.FI.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Aprendizaje profundoPredicción genómicaRedes neuronalesGrafosDNAI : Machine learning for genome enabled prediction of complex traits in agricultureTesis de gradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaElenter, JuanEtchebarne, GuillermoHounie, IgnacioFariello, María InésLecumberry, FedericoUniversidad de la República (Uruguay). Facultad de Ingeniería.Ingeniero ElectricistaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/28582/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/28582/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/28582/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/28582/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALEEH21.pdfEEH21.pdfapplication/pdf36023283http://localhost:8080/xmlui/bitstream/20.500.12008/28582/1/EEH21.pdf6205219c9cd9f1ee60303ac2fbbc5df2MD5120.500.12008/285822024-04-12 14:05:06.636oai:colibri.udelar.edu.uy:20.500.12008/28582VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:40:52.688316COLIBRI - Universidad de la Repúblicafalse
spellingShingle DNAI : Machine learning for genome enabled prediction of complex traits in agriculture
Elenter, Juan
Aprendizaje profundo
Predicción genómica
Redes neuronales
Grafos
status_str acceptedVersion
title DNAI : Machine learning for genome enabled prediction of complex traits in agriculture
title_full DNAI : Machine learning for genome enabled prediction of complex traits in agriculture
title_fullStr DNAI : Machine learning for genome enabled prediction of complex traits in agriculture
title_full_unstemmed DNAI : Machine learning for genome enabled prediction of complex traits in agriculture
title_short DNAI : Machine learning for genome enabled prediction of complex traits in agriculture
title_sort DNAI : Machine learning for genome enabled prediction of complex traits in agriculture
topic Aprendizaje profundo
Predicción genómica
Redes neuronales
Grafos
url https://hdl.handle.net/20.500.12008/28582