DNAI : Machine learning for genome enabled prediction of complex traits in agriculture
Supervisor(es): Fariello, María Inés - Lecumberry, Federico
Resumen:
Genome enabled prediction of complex traits aims to predict a measurable characteristic of an organism using their genetic information. In the present work we address diverse traits and organisms including yeast growth, wheat yield, Jersey bull fertility and Holstein cattle milk yield. We benchmark several popular Machine Learning models: bayesian and penalized linear regressions, kernel methods, and decision tree ensembles. Through exhaustive hyperparameter tuning we outperform state-of-the-art results in most datasets. We also compare two codification techniques for input data and perform ablation studies to assess robustness to genetic marker - i.e input features - elimination. We then explore different Deep Learning architectures for this task. We propose and evaluate CNN architectures, showing that using residual connections improves perfomance but that in some cases Fully Connected Networks outperform CNNs. We link this to the fact that absolute positions are relevant in genomes, and thus, CNN's translational equivariance may not be an adequate inductive bias for tackling this problem. In addition, we explore using PCA and TSNE for mapping input features to two-dimensional image-like feature maps used as inputs to 2D-CNN architectures. We assess the effectiveness of the aforementioned dimensionality reduction techniques when used to construct those mappings, and find that in some cases, using random mappings performs comparably. We also propose a method to construct these image-like feature maps based on an approximation to the Fermat distance. Furthermore, we evaluate graph neural network architectures by formulating trait prediction as a node regression problem on a population graph, where each node represents an individual, and edges association between their genetic information. We evaluate the transferability of these graphical models and find that the extent to which they exploit neighbourhood information is limited. We also propose a model combining CNN and GNN architectures, which outperforms all other models in Holstein cattle milk yield prediction. Lastly, we propose optimising Pearson correlation directly, which is commonly used to evaluate model performance, but MSE is usually minimised. Although this loss does not penalise learning an affine transformation of actual phenotypes, we show that this affine transformation can be estimated from train data, and leads to models with both lower MSE and higher predictive correlations.
2021 | |
Aprendizaje profundo Predicción genómica Redes neuronales Grafos |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/28582 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807523105226096640 |
---|---|
author | Elenter, Juan |
author2 | Etchebarne, Guillermo Hounie, Ignacio |
author2_role | author author |
author_facet | Elenter, Juan Etchebarne, Guillermo Hounie, Ignacio |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a006180e3f5b2ad0b88185d14284c0e0 36c32e9c6da50e6d55578c16944ef7f6 1996b8461bc290aef6a27d78c67b6b52 6205219c9cd9f1ee60303ac2fbbc5df2 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/28582/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/28582/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/28582/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/28582/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/28582/1/EEH21.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Elenter Juan, Universidad de la República (Uruguay). Facultad de Ingeniería. Etchebarne Guillermo, Universidad de la República (Uruguay). Facultad de Ingeniería. Hounie Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería. |
dc.creator.advisor.none.fl_str_mv | Fariello, María Inés Lecumberry, Federico |
dc.creator.none.fl_str_mv | Elenter, Juan Etchebarne, Guillermo Hounie, Ignacio |
dc.date.accessioned.none.fl_str_mv | 2021-07-15T17:00:31Z |
dc.date.available.none.fl_str_mv | 2021-07-15T17:00:31Z |
dc.date.issued.none.fl_str_mv | 2021 |
dc.description.abstract.none.fl_txt_mv | Genome enabled prediction of complex traits aims to predict a measurable characteristic of an organism using their genetic information. In the present work we address diverse traits and organisms including yeast growth, wheat yield, Jersey bull fertility and Holstein cattle milk yield. We benchmark several popular Machine Learning models: bayesian and penalized linear regressions, kernel methods, and decision tree ensembles. Through exhaustive hyperparameter tuning we outperform state-of-the-art results in most datasets. We also compare two codification techniques for input data and perform ablation studies to assess robustness to genetic marker - i.e input features - elimination. We then explore different Deep Learning architectures for this task. We propose and evaluate CNN architectures, showing that using residual connections improves perfomance but that in some cases Fully Connected Networks outperform CNNs. We link this to the fact that absolute positions are relevant in genomes, and thus, CNN's translational equivariance may not be an adequate inductive bias for tackling this problem. In addition, we explore using PCA and TSNE for mapping input features to two-dimensional image-like feature maps used as inputs to 2D-CNN architectures. We assess the effectiveness of the aforementioned dimensionality reduction techniques when used to construct those mappings, and find that in some cases, using random mappings performs comparably. We also propose a method to construct these image-like feature maps based on an approximation to the Fermat distance. Furthermore, we evaluate graph neural network architectures by formulating trait prediction as a node regression problem on a population graph, where each node represents an individual, and edges association between their genetic information. We evaluate the transferability of these graphical models and find that the extent to which they exploit neighbourhood information is limited. We also propose a model combining CNN and GNN architectures, which outperforms all other models in Holstein cattle milk yield prediction. Lastly, we propose optimising Pearson correlation directly, which is commonly used to evaluate model performance, but MSE is usually minimised. Although this loss does not penalise learning an affine transformation of actual phenotypes, we show that this affine transformation can be estimated from train data, and leads to models with both lower MSE and higher predictive correlations. |
dc.format.extent.es.fl_str_mv | 191 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Elenter, J., Etchebarne, G. y Hounie, I. DNAI : Machine learning for genome enabled prediction of complex traits in agriculture [en línea]. Tesis de grado. Montevideo : Udelar. FI. IIE, 2021. |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/28582 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | Udelar.FI. |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Aprendizaje profundo Predicción genómica Redes neuronales Grafos |
dc.title.none.fl_str_mv | DNAI : Machine learning for genome enabled prediction of complex traits in agriculture |
dc.type.es.fl_str_mv | Tesis de grado |
dc.type.none.fl_str_mv | info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/acceptedVersion |
description | Genome enabled prediction of complex traits aims to predict a measurable characteristic of an organism using their genetic information. In the present work we address diverse traits and organisms including yeast growth, wheat yield, Jersey bull fertility and Holstein cattle milk yield. We benchmark several popular Machine Learning models: bayesian and penalized linear regressions, kernel methods, and decision tree ensembles. Through exhaustive hyperparameter tuning we outperform state-of-the-art results in most datasets. We also compare two codification techniques for input data and perform ablation studies to assess robustness to genetic marker - i.e input features - elimination. We then explore different Deep Learning architectures for this task. We propose and evaluate CNN architectures, showing that using residual connections improves perfomance but that in some cases Fully Connected Networks outperform CNNs. We link this to the fact that absolute positions are relevant in genomes, and thus, CNN's translational equivariance may not be an adequate inductive bias for tackling this problem. In addition, we explore using PCA and TSNE for mapping input features to two-dimensional image-like feature maps used as inputs to 2D-CNN architectures. We assess the effectiveness of the aforementioned dimensionality reduction techniques when used to construct those mappings, and find that in some cases, using random mappings performs comparably. We also propose a method to construct these image-like feature maps based on an approximation to the Fermat distance. Furthermore, we evaluate graph neural network architectures by formulating trait prediction as a node regression problem on a population graph, where each node represents an individual, and edges association between their genetic information. We evaluate the transferability of these graphical models and find that the extent to which they exploit neighbourhood information is limited. We also propose a model combining CNN and GNN architectures, which outperforms all other models in Holstein cattle milk yield prediction. Lastly, we propose optimising Pearson correlation directly, which is commonly used to evaluate model performance, but MSE is usually minimised. Although this loss does not penalise learning an affine transformation of actual phenotypes, we show that this affine transformation can be estimated from train data, and leads to models with both lower MSE and higher predictive correlations. |
eu_rights_str_mv | openAccess |
format | bachelorThesis |
id | COLIBRI_f237d74900fd8e9725edc5063221b5ed |
identifier_str_mv | Elenter, J., Etchebarne, G. y Hounie, I. DNAI : Machine learning for genome enabled prediction of complex traits in agriculture [en línea]. Tesis de grado. Montevideo : Udelar. FI. IIE, 2021. |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/28582 |
publishDate | 2021 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | Elenter Juan, Universidad de la República (Uruguay). Facultad de Ingeniería.Etchebarne Guillermo, Universidad de la República (Uruguay). Facultad de Ingeniería.Hounie Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería.2021-07-15T17:00:31Z2021-07-15T17:00:31Z2021Elenter, J., Etchebarne, G. y Hounie, I. DNAI : Machine learning for genome enabled prediction of complex traits in agriculture [en línea]. Tesis de grado. Montevideo : Udelar. FI. IIE, 2021.https://hdl.handle.net/20.500.12008/28582Genome enabled prediction of complex traits aims to predict a measurable characteristic of an organism using their genetic information. In the present work we address diverse traits and organisms including yeast growth, wheat yield, Jersey bull fertility and Holstein cattle milk yield. We benchmark several popular Machine Learning models: bayesian and penalized linear regressions, kernel methods, and decision tree ensembles. Through exhaustive hyperparameter tuning we outperform state-of-the-art results in most datasets. We also compare two codification techniques for input data and perform ablation studies to assess robustness to genetic marker - i.e input features - elimination. We then explore different Deep Learning architectures for this task. We propose and evaluate CNN architectures, showing that using residual connections improves perfomance but that in some cases Fully Connected Networks outperform CNNs. We link this to the fact that absolute positions are relevant in genomes, and thus, CNN's translational equivariance may not be an adequate inductive bias for tackling this problem. In addition, we explore using PCA and TSNE for mapping input features to two-dimensional image-like feature maps used as inputs to 2D-CNN architectures. We assess the effectiveness of the aforementioned dimensionality reduction techniques when used to construct those mappings, and find that in some cases, using random mappings performs comparably. We also propose a method to construct these image-like feature maps based on an approximation to the Fermat distance. Furthermore, we evaluate graph neural network architectures by formulating trait prediction as a node regression problem on a population graph, where each node represents an individual, and edges association between their genetic information. We evaluate the transferability of these graphical models and find that the extent to which they exploit neighbourhood information is limited. We also propose a model combining CNN and GNN architectures, which outperforms all other models in Holstein cattle milk yield prediction. Lastly, we propose optimising Pearson correlation directly, which is commonly used to evaluate model performance, but MSE is usually minimised. Although this loss does not penalise learning an affine transformation of actual phenotypes, we show that this affine transformation can be estimated from train data, and leads to models with both lower MSE and higher predictive correlations.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2021-07-14T21:48:42Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) EEH21.pdf: 36023283 bytes, checksum: 6205219c9cd9f1ee60303ac2fbbc5df2 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2021-07-15T15:19:19Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) EEH21.pdf: 36023283 bytes, checksum: 6205219c9cd9f1ee60303ac2fbbc5df2 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2021-07-15T17:00:31Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) EEH21.pdf: 36023283 bytes, checksum: 6205219c9cd9f1ee60303ac2fbbc5df2 (MD5) Previous issue date: 2021191 p.application/pdfenengUdelar.FI.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Aprendizaje profundoPredicción genómicaRedes neuronalesGrafosDNAI : Machine learning for genome enabled prediction of complex traits in agricultureTesis de gradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaElenter, JuanEtchebarne, GuillermoHounie, IgnacioFariello, María InésLecumberry, FedericoUniversidad de la República (Uruguay). Facultad de Ingeniería.Ingeniero ElectricistaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/28582/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/28582/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/28582/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/28582/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALEEH21.pdfEEH21.pdfapplication/pdf36023283http://localhost:8080/xmlui/bitstream/20.500.12008/28582/1/EEH21.pdf6205219c9cd9f1ee60303ac2fbbc5df2MD5120.500.12008/285822024-04-12 14:05:06.636oai:colibri.udelar.edu.uy:20.500.12008/28582VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:40:52.688316COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | DNAI : Machine learning for genome enabled prediction of complex traits in agriculture Elenter, Juan Aprendizaje profundo Predicción genómica Redes neuronales Grafos |
status_str | acceptedVersion |
title | DNAI : Machine learning for genome enabled prediction of complex traits in agriculture |
title_full | DNAI : Machine learning for genome enabled prediction of complex traits in agriculture |
title_fullStr | DNAI : Machine learning for genome enabled prediction of complex traits in agriculture |
title_full_unstemmed | DNAI : Machine learning for genome enabled prediction of complex traits in agriculture |
title_short | DNAI : Machine learning for genome enabled prediction of complex traits in agriculture |
title_sort | DNAI : Machine learning for genome enabled prediction of complex traits in agriculture |
topic | Aprendizaje profundo Predicción genómica Redes neuronales Grafos |
url | https://hdl.handle.net/20.500.12008/28582 |