Limit theorems for continuous time Markov chains and applications to large scale queueing systems
Supervisor(es): Paganini, Fernando - Ferragut, Andrés
Resumen:
This thesis discusses limit theorems for density dependent families of continuoustime Markov chains and their application to the stochastic analysis of large scalecloud computing environments and data centers. On the purely theoretical side, wereview the classic functional strong law of large numbers and central limit theoremdue to Kurtz, which characterize the asymptotic behavior of density dependentfamilies in terms of their drift. In the case of the central limit theorem we provide extensions in two directions: to consider small order perturbations in the transitionrates of the family and non-differentiable drifts. The classic theorems and the latterextensions are used to study the dynamic right sizing of capacity in large scalecloud environments and data centers, aimed at the adjustment of this capacity toan uncertain workload. Under a central queue scheme and Markovian assumptions,we design a policy that eliminates queueing almost completely, at the expense of aslight over-provisioning; ifρthe traffic intensity, then the over-provisioning scales as O(√ρ) whenρ→∞. In this sense our policy automatically adjusts the system’scapacity according to the well-known square root staffing rule.
En esta tesis se estudian teoremas límite para familias de cadenas de Markov de tiempo continuo, así como su aplicación al análisis estocástico de ambientes tipo cloud y data centers. En un comienzo se presentan resultados clásicos debidos a Kurtz, que caracterizan el comportamiento asintóico de estas familias a partir desu drift; a saber, una ley fuerte de grandes números y un teorema central del límite, ambos funcionales. En el último caso obtenemos extensiones en dos direcciones: considerando perturbaciones de pequeño orden en las tasas de transición de la familia y drifts no diferenciables. Los teoremas clásicos y las extensiones anteriores seemplean para estudiar el ajuste dinámico de la capacidad de cómputo de ambientes tipo cloud y data centers de gran escala, orientado a ajustar la capacidad de cómputo a una demanda incierta. Utilizando un esquema de cola centralizada y bajo hipótesis Markovianas, diseñamos una política que evita el encolado de tareas a expensas de un pequeño sobre dimensionamiento de la capacidad de cómputo; si ρ is la intensidad de tráfico, entonces la capacidad ociosa escala como O(√ρ) cuandoρ→ ∞. Eneste sentido nuestra política ajusta automáticamente la capacidad de cómputo del sistema según el conocido criterio de la raíz cuadrada.
2018 | |
Markov chain Strong law of large number Fluid limit Central limit theorem Diffusion approximation Queueing theory Heavy traffic Feedback control Cloud computing Data center |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/21041 | |
Acceso abierto | |
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND) |
_version_ | 1807522820598530048 |
---|---|
author | Goldsztajn, Diego |
author_facet | Goldsztajn, Diego |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e ebc3369ab4f91bdbce2dd2c63d9d390b |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/21041/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/21041/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/21041/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/21041/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/21041/1/TM-GOLDSZTAJN.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Goldsztajn Diego, Universidad de la República (Uruguay). Facultad de Ciencias |
dc.creator.advisor.none.fl_str_mv | Paganini, Fernando Ferragut, Andrés |
dc.creator.none.fl_str_mv | Goldsztajn, Diego |
dc.date.accessioned.none.fl_str_mv | 2019-06-24T15:46:16Z |
dc.date.available.none.fl_str_mv | 2019-06-24T15:46:16Z |
dc.date.issued.none.fl_str_mv | 2018 |
dc.description.abstract.none.fl_txt_mv | This thesis discusses limit theorems for density dependent families of continuoustime Markov chains and their application to the stochastic analysis of large scalecloud computing environments and data centers. On the purely theoretical side, wereview the classic functional strong law of large numbers and central limit theoremdue to Kurtz, which characterize the asymptotic behavior of density dependentfamilies in terms of their drift. In the case of the central limit theorem we provide extensions in two directions: to consider small order perturbations in the transitionrates of the family and non-differentiable drifts. The classic theorems and the latterextensions are used to study the dynamic right sizing of capacity in large scalecloud environments and data centers, aimed at the adjustment of this capacity toan uncertain workload. Under a central queue scheme and Markovian assumptions,we design a policy that eliminates queueing almost completely, at the expense of aslight over-provisioning; ifρthe traffic intensity, then the over-provisioning scales as O(√ρ) whenρ→∞. In this sense our policy automatically adjusts the system’scapacity according to the well-known square root staffing rule. En esta tesis se estudian teoremas límite para familias de cadenas de Markov de tiempo continuo, así como su aplicación al análisis estocástico de ambientes tipo cloud y data centers. En un comienzo se presentan resultados clásicos debidos a Kurtz, que caracterizan el comportamiento asintóico de estas familias a partir desu drift; a saber, una ley fuerte de grandes números y un teorema central del límite, ambos funcionales. En el último caso obtenemos extensiones en dos direcciones: considerando perturbaciones de pequeño orden en las tasas de transición de la familia y drifts no diferenciables. Los teoremas clásicos y las extensiones anteriores seemplean para estudiar el ajuste dinámico de la capacidad de cómputo de ambientes tipo cloud y data centers de gran escala, orientado a ajustar la capacidad de cómputo a una demanda incierta. Utilizando un esquema de cola centralizada y bajo hipótesis Markovianas, diseñamos una política que evita el encolado de tareas a expensas de un pequeño sobre dimensionamiento de la capacidad de cómputo; si ρ is la intensidad de tráfico, entonces la capacidad ociosa escala como O(√ρ) cuandoρ→ ∞. Eneste sentido nuestra política ajusta automáticamente la capacidad de cómputo del sistema según el conocido criterio de la raíz cuadrada. |
dc.format.extent.es.fl_str_mv | 133 h. |
dc.format.mimetype.en.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Goldsztajn, D. Limit theorems for continuous time Markov chains and applications to large scale queueing systems [en línea] Tesis de maestría. Montevideo : UR.FC.CMAT, 2018. |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/21041 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | UR.FC.CMAT |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.en.fl_str_mv | Markov chain Strong law of large number Fluid limit Central limit theorem Diffusion approximation Queueing theory Heavy traffic Feedback control Cloud computing Data center |
dc.title.none.fl_str_mv | Limit theorems for continuous time Markov chains and applications to large scale queueing systems |
dc.type.es.fl_str_mv | Tesis de maestría |
dc.type.none.fl_str_mv | info:eu-repo/semantics/masterThesis |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/acceptedVersion |
description | This thesis discusses limit theorems for density dependent families of continuoustime Markov chains and their application to the stochastic analysis of large scalecloud computing environments and data centers. On the purely theoretical side, wereview the classic functional strong law of large numbers and central limit theoremdue to Kurtz, which characterize the asymptotic behavior of density dependentfamilies in terms of their drift. In the case of the central limit theorem we provide extensions in two directions: to consider small order perturbations in the transitionrates of the family and non-differentiable drifts. The classic theorems and the latterextensions are used to study the dynamic right sizing of capacity in large scalecloud environments and data centers, aimed at the adjustment of this capacity toan uncertain workload. Under a central queue scheme and Markovian assumptions,we design a policy that eliminates queueing almost completely, at the expense of aslight over-provisioning; ifρthe traffic intensity, then the over-provisioning scales as O(√ρ) whenρ→∞. In this sense our policy automatically adjusts the system’scapacity according to the well-known square root staffing rule. |
eu_rights_str_mv | openAccess |
format | masterThesis |
id | COLIBRI_f1d8ab0d4cdcb3ed51dc1fc06c275489 |
identifier_str_mv | Goldsztajn, D. Limit theorems for continuous time Markov chains and applications to large scale queueing systems [en línea] Tesis de maestría. Montevideo : UR.FC.CMAT, 2018. |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/21041 |
publishDate | 2018 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND) |
spelling | Goldsztajn Diego, Universidad de la República (Uruguay). Facultad de Ciencias2019-06-24T15:46:16Z2019-06-24T15:46:16Z2018Goldsztajn, D. Limit theorems for continuous time Markov chains and applications to large scale queueing systems [en línea] Tesis de maestría. Montevideo : UR.FC.CMAT, 2018.https://hdl.handle.net/20.500.12008/21041This thesis discusses limit theorems for density dependent families of continuoustime Markov chains and their application to the stochastic analysis of large scalecloud computing environments and data centers. On the purely theoretical side, wereview the classic functional strong law of large numbers and central limit theoremdue to Kurtz, which characterize the asymptotic behavior of density dependentfamilies in terms of their drift. In the case of the central limit theorem we provide extensions in two directions: to consider small order perturbations in the transitionrates of the family and non-differentiable drifts. The classic theorems and the latterextensions are used to study the dynamic right sizing of capacity in large scalecloud environments and data centers, aimed at the adjustment of this capacity toan uncertain workload. Under a central queue scheme and Markovian assumptions,we design a policy that eliminates queueing almost completely, at the expense of aslight over-provisioning; ifρthe traffic intensity, then the over-provisioning scales as O(√ρ) whenρ→∞. In this sense our policy automatically adjusts the system’scapacity according to the well-known square root staffing rule.En esta tesis se estudian teoremas límite para familias de cadenas de Markov de tiempo continuo, así como su aplicación al análisis estocástico de ambientes tipo cloud y data centers. En un comienzo se presentan resultados clásicos debidos a Kurtz, que caracterizan el comportamiento asintóico de estas familias a partir desu drift; a saber, una ley fuerte de grandes números y un teorema central del límite, ambos funcionales. En el último caso obtenemos extensiones en dos direcciones: considerando perturbaciones de pequeño orden en las tasas de transición de la familia y drifts no diferenciables. Los teoremas clásicos y las extensiones anteriores seemplean para estudiar el ajuste dinámico de la capacidad de cómputo de ambientes tipo cloud y data centers de gran escala, orientado a ajustar la capacidad de cómputo a una demanda incierta. Utilizando un esquema de cola centralizada y bajo hipótesis Markovianas, diseñamos una política que evita el encolado de tareas a expensas de un pequeño sobre dimensionamiento de la capacidad de cómputo; si ρ is la intensidad de tráfico, entonces la capacidad ociosa escala como O(√ρ) cuandoρ→ ∞. Eneste sentido nuestra política ajusta automáticamente la capacidad de cómputo del sistema según el conocido criterio de la raíz cuadrada.Submitted by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2019-06-24T15:46:16Z No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) TM-GOLDSZTAJN.pdf: 1616034 bytes, checksum: ebc3369ab4f91bdbce2dd2c63d9d390b (MD5)Made available in DSpace on 2019-06-24T15:46:16Z (GMT). No. of bitstreams: 2 license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) TM-GOLDSZTAJN.pdf: 1616034 bytes, checksum: ebc3369ab4f91bdbce2dd2c63d9d390b (MD5) Previous issue date: 2018133 h.application/pdfenengUR.FC.CMATLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)Markov chainStrong law of large numberFluid limitCentral limit theoremDiffusion approximationQueueing theoryHeavy trafficFeedback controlCloud computingData centerLimit theorems for continuous time Markov chains and applications to large scale queueing systemsTesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaGoldsztajn, DiegoPaganini, FernandoFerragut, AndrésUniversidad de la República (Uruguay). Facultad de CienciasMagíster en MatemáticaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/21041/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://localhost:8080/xmlui/bitstream/20.500.12008/21041/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://localhost:8080/xmlui/bitstream/20.500.12008/21041/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://localhost:8080/xmlui/bitstream/20.500.12008/21041/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALTM-GOLDSZTAJN.pdfTM-GOLDSZTAJN.pdfapplication/pdf1616034http://localhost:8080/xmlui/bitstream/20.500.12008/21041/1/TM-GOLDSZTAJN.pdfebc3369ab4f91bdbce2dd2c63d9d390bMD5120.500.12008/210412022-03-07 08:14:32.535oai:colibri.udelar.edu.uy:20.500.12008/21041VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:30:03.610769COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Limit theorems for continuous time Markov chains and applications to large scale queueing systems Goldsztajn, Diego Markov chain Strong law of large number Fluid limit Central limit theorem Diffusion approximation Queueing theory Heavy traffic Feedback control Cloud computing Data center |
status_str | acceptedVersion |
title | Limit theorems for continuous time Markov chains and applications to large scale queueing systems |
title_full | Limit theorems for continuous time Markov chains and applications to large scale queueing systems |
title_fullStr | Limit theorems for continuous time Markov chains and applications to large scale queueing systems |
title_full_unstemmed | Limit theorems for continuous time Markov chains and applications to large scale queueing systems |
title_short | Limit theorems for continuous time Markov chains and applications to large scale queueing systems |
title_sort | Limit theorems for continuous time Markov chains and applications to large scale queueing systems |
topic | Markov chain Strong law of large number Fluid limit Central limit theorem Diffusion approximation Queueing theory Heavy traffic Feedback control Cloud computing Data center |
url | https://hdl.handle.net/20.500.12008/21041 |