Evaluación de modelos de aprendizaje profundo para la predicción de temperaturas máximas usando información espacio-temporal.

Marco, Gonzalo - Miranda, María Eugenia

Supervisor(es): Rodríguez Bocca, Pablo

Resumen:

En este proyecto evaluamos y comparamos dos modelos de aprendizaje profundo basados en paradigmas distintos, para descubrir su capacidad de inferir valores a base de la combinación de información espacio-temporal. Para ello, planteamos el objetivo de predecir temperaturas máximas a corto plazo en una amplia región del sur de América del Sur, usando información del pasado en conjunto con información geográfica. En la actualidad, para llevar adelante esta tarea se utilizan modelos físicos de predicción numérica, de alta complejidad, especificidad y costo en cómputo. Por otra parte, el área de aprendizaje automático ha logrado recientemente grandes avances en la predicción meteorológica. Este proyecto se enmarca en el trabajo de un grupo interdisciplinario e internacional llamado ClimateDL, cuyo objetivo es evaluar distintos métodos para la predicción de temperaturas extremas a nivel estacional (mediano plazo con horizontes de varios meses) en el territorio sur de Sudamérica. Para predecir temperaturas máximas en un horizonte de hasta 10 días, evaluamos dos modelos: XGBoost y Graph WaveNet. Como resultado de este trabajo, concluimos principalmente que Graph WaveNet resulta ser mejor que XGBoost para las predicciones a corto plazo. Y más importante aún, es que lo logra con mucho menos esfuerzo de acondicionamiento de datos. Por su parte, XGBoost, parece capturar mejor el comportamiento estacionario de la temperatura máxima, y, por lo tanto, su desempeño mejora comparativamente al aumentar el horizonte de observación. Además de los hallazgos mencionados, este proyecto ha contribuido al grupo ClimateDL mediante la presentación de resultados en una reunión presencial y la colaboración en la redacción de un artículo académico.


Detalles Bibliográficos
2023
Aprendizaje automático
Series de tiempo
Predicción de temperatura
Información espacial
Ventanas de tiempo
Clima
Meteorología
ClimateDL
XGBoost
WaveNet
Español
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/42433
Acceso abierto
Licencia Creative Commons Atribución (CC - By 4.0)
_version_ 1807523230339039232
author Marco, Gonzalo
author2 Miranda, María Eugenia
author2_role author
author_facet Marco, Gonzalo
Miranda, María Eugenia
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a0ebbeafb9d2ec7cbb19d7137ebc392c
c3353adb4b970603e3b1fce8a9e67d6c
71ed42ef0a0b648670f707320be37b90
848cec4a52cf19adc83a99087e7d93f5
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/42433/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/42433/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/42433/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/42433/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/42433/1/MM23.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Marco Gonzalo, Universidad de la República (Uruguay). Facultad de Ingeniería.
Miranda María Eugenia, Universidad de la República (Uruguay). Facultad de Ingeniería
dc.creator.advisor.none.fl_str_mv Rodríguez Bocca, Pablo
dc.creator.none.fl_str_mv Marco, Gonzalo
Miranda, María Eugenia
dc.date.accessioned.none.fl_str_mv 2024-02-09T19:46:40Z
dc.date.available.none.fl_str_mv 2024-02-09T19:46:40Z
dc.date.issued.none.fl_str_mv 2023
dc.description.abstract.none.fl_txt_mv En este proyecto evaluamos y comparamos dos modelos de aprendizaje profundo basados en paradigmas distintos, para descubrir su capacidad de inferir valores a base de la combinación de información espacio-temporal. Para ello, planteamos el objetivo de predecir temperaturas máximas a corto plazo en una amplia región del sur de América del Sur, usando información del pasado en conjunto con información geográfica. En la actualidad, para llevar adelante esta tarea se utilizan modelos físicos de predicción numérica, de alta complejidad, especificidad y costo en cómputo. Por otra parte, el área de aprendizaje automático ha logrado recientemente grandes avances en la predicción meteorológica. Este proyecto se enmarca en el trabajo de un grupo interdisciplinario e internacional llamado ClimateDL, cuyo objetivo es evaluar distintos métodos para la predicción de temperaturas extremas a nivel estacional (mediano plazo con horizontes de varios meses) en el territorio sur de Sudamérica. Para predecir temperaturas máximas en un horizonte de hasta 10 días, evaluamos dos modelos: XGBoost y Graph WaveNet. Como resultado de este trabajo, concluimos principalmente que Graph WaveNet resulta ser mejor que XGBoost para las predicciones a corto plazo. Y más importante aún, es que lo logra con mucho menos esfuerzo de acondicionamiento de datos. Por su parte, XGBoost, parece capturar mejor el comportamiento estacionario de la temperatura máxima, y, por lo tanto, su desempeño mejora comparativamente al aumentar el horizonte de observación. Además de los hallazgos mencionados, este proyecto ha contribuido al grupo ClimateDL mediante la presentación de resultados en una reunión presencial y la colaboración en la redacción de un artículo académico.
dc.format.extent.es.fl_str_mv 89 p,
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Marco, G. y Miranda, M. Evaluación de modelos de aprendizaje profundo para la predicción de temperaturas máximas usando información espacio-temporal [en línea] Tesis de grado. Montevideo: Udelar. FI. INCO, 2023.
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/42433
dc.language.iso.none.fl_str_mv es
spa
dc.publisher.es.fl_str_mv Udelar. FI.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución (CC - By 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Aprendizaje automático
Series de tiempo
Predicción de temperatura
Información espacial
Ventanas de tiempo
Clima
Meteorología
ClimateDL
XGBoost
WaveNet
dc.title.none.fl_str_mv Evaluación de modelos de aprendizaje profundo para la predicción de temperaturas máximas usando información espacio-temporal.
dc.type.es.fl_str_mv Tesis de grado
dc.type.none.fl_str_mv info:eu-repo/semantics/bachelorThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description En este proyecto evaluamos y comparamos dos modelos de aprendizaje profundo basados en paradigmas distintos, para descubrir su capacidad de inferir valores a base de la combinación de información espacio-temporal. Para ello, planteamos el objetivo de predecir temperaturas máximas a corto plazo en una amplia región del sur de América del Sur, usando información del pasado en conjunto con información geográfica. En la actualidad, para llevar adelante esta tarea se utilizan modelos físicos de predicción numérica, de alta complejidad, especificidad y costo en cómputo. Por otra parte, el área de aprendizaje automático ha logrado recientemente grandes avances en la predicción meteorológica. Este proyecto se enmarca en el trabajo de un grupo interdisciplinario e internacional llamado ClimateDL, cuyo objetivo es evaluar distintos métodos para la predicción de temperaturas extremas a nivel estacional (mediano plazo con horizontes de varios meses) en el territorio sur de Sudamérica. Para predecir temperaturas máximas en un horizonte de hasta 10 días, evaluamos dos modelos: XGBoost y Graph WaveNet. Como resultado de este trabajo, concluimos principalmente que Graph WaveNet resulta ser mejor que XGBoost para las predicciones a corto plazo. Y más importante aún, es que lo logra con mucho menos esfuerzo de acondicionamiento de datos. Por su parte, XGBoost, parece capturar mejor el comportamiento estacionario de la temperatura máxima, y, por lo tanto, su desempeño mejora comparativamente al aumentar el horizonte de observación. Además de los hallazgos mencionados, este proyecto ha contribuido al grupo ClimateDL mediante la presentación de resultados en una reunión presencial y la colaboración en la redacción de un artículo académico.
eu_rights_str_mv openAccess
format bachelorThesis
id COLIBRI_f123ee3a721dc3112cb224ac39cafaa6
identifier_str_mv Marco, G. y Miranda, M. Evaluación de modelos de aprendizaje profundo para la predicción de temperaturas máximas usando información espacio-temporal [en línea] Tesis de grado. Montevideo: Udelar. FI. INCO, 2023.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/42433
publishDate 2023
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución (CC - By 4.0)
spelling Marco Gonzalo, Universidad de la República (Uruguay). Facultad de Ingeniería.Miranda María Eugenia, Universidad de la República (Uruguay). Facultad de Ingeniería2024-02-09T19:46:40Z2024-02-09T19:46:40Z2023Marco, G. y Miranda, M. Evaluación de modelos de aprendizaje profundo para la predicción de temperaturas máximas usando información espacio-temporal [en línea] Tesis de grado. Montevideo: Udelar. FI. INCO, 2023.https://hdl.handle.net/20.500.12008/42433En este proyecto evaluamos y comparamos dos modelos de aprendizaje profundo basados en paradigmas distintos, para descubrir su capacidad de inferir valores a base de la combinación de información espacio-temporal. Para ello, planteamos el objetivo de predecir temperaturas máximas a corto plazo en una amplia región del sur de América del Sur, usando información del pasado en conjunto con información geográfica. En la actualidad, para llevar adelante esta tarea se utilizan modelos físicos de predicción numérica, de alta complejidad, especificidad y costo en cómputo. Por otra parte, el área de aprendizaje automático ha logrado recientemente grandes avances en la predicción meteorológica. Este proyecto se enmarca en el trabajo de un grupo interdisciplinario e internacional llamado ClimateDL, cuyo objetivo es evaluar distintos métodos para la predicción de temperaturas extremas a nivel estacional (mediano plazo con horizontes de varios meses) en el territorio sur de Sudamérica. Para predecir temperaturas máximas en un horizonte de hasta 10 días, evaluamos dos modelos: XGBoost y Graph WaveNet. Como resultado de este trabajo, concluimos principalmente que Graph WaveNet resulta ser mejor que XGBoost para las predicciones a corto plazo. Y más importante aún, es que lo logra con mucho menos esfuerzo de acondicionamiento de datos. Por su parte, XGBoost, parece capturar mejor el comportamiento estacionario de la temperatura máxima, y, por lo tanto, su desempeño mejora comparativamente al aumentar el horizonte de observación. Además de los hallazgos mencionados, este proyecto ha contribuido al grupo ClimateDL mediante la presentación de resultados en una reunión presencial y la colaboración en la redacción de un artículo académico.Submitted by Berón Cecilia (cberon@fing.edu.uy) on 2024-02-02T17:17:32Z No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) MM23.pdf: 4823945 bytes, checksum: 848cec4a52cf19adc83a99087e7d93f5 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2024-02-09T18:47:21Z (GMT) No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) MM23.pdf: 4823945 bytes, checksum: 848cec4a52cf19adc83a99087e7d93f5 (MD5)Made available in DSpace by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2024-02-09T19:46:40Z (GMT). No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) MM23.pdf: 4823945 bytes, checksum: 848cec4a52cf19adc83a99087e7d93f5 (MD5) Previous issue date: 202389 p,application/pdfesspaUdelar. FI.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución (CC - By 4.0)Aprendizaje automáticoSeries de tiempoPredicción de temperaturaInformación espacialVentanas de tiempoClimaMeteorologíaClimateDLXGBoostWaveNetEvaluación de modelos de aprendizaje profundo para la predicción de temperaturas máximas usando información espacio-temporal.Tesis de gradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaMarco, GonzaloMiranda, María EugeniaRodríguez Bocca, PabloUniversidad de la República (Uruguay). Facultad de Ingeniería.Ingeniero en Computación.LICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/42433/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-844http://localhost:8080/xmlui/bitstream/20.500.12008/42433/2/license_urla0ebbeafb9d2ec7cbb19d7137ebc392cMD52license_textlicense_texttext/html; charset=utf-820555http://localhost:8080/xmlui/bitstream/20.500.12008/42433/3/license_textc3353adb4b970603e3b1fce8a9e67d6cMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-824251http://localhost:8080/xmlui/bitstream/20.500.12008/42433/4/license_rdf71ed42ef0a0b648670f707320be37b90MD54ORIGINALMM23.pdfMM23.pdfapplication/pdf4823945http://localhost:8080/xmlui/bitstream/20.500.12008/42433/1/MM23.pdf848cec4a52cf19adc83a99087e7d93f5MD5120.500.12008/424332024-04-12 14:06:41.008oai:colibri.udelar.edu.uy:20.500.12008/42433VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:46:30.281946COLIBRI - Universidad de la Repúblicafalse
spellingShingle Evaluación de modelos de aprendizaje profundo para la predicción de temperaturas máximas usando información espacio-temporal.
Marco, Gonzalo
Aprendizaje automático
Series de tiempo
Predicción de temperatura
Información espacial
Ventanas de tiempo
Clima
Meteorología
ClimateDL
XGBoost
WaveNet
status_str acceptedVersion
title Evaluación de modelos de aprendizaje profundo para la predicción de temperaturas máximas usando información espacio-temporal.
title_full Evaluación de modelos de aprendizaje profundo para la predicción de temperaturas máximas usando información espacio-temporal.
title_fullStr Evaluación de modelos de aprendizaje profundo para la predicción de temperaturas máximas usando información espacio-temporal.
title_full_unstemmed Evaluación de modelos de aprendizaje profundo para la predicción de temperaturas máximas usando información espacio-temporal.
title_short Evaluación de modelos de aprendizaje profundo para la predicción de temperaturas máximas usando información espacio-temporal.
title_sort Evaluación de modelos de aprendizaje profundo para la predicción de temperaturas máximas usando información espacio-temporal.
topic Aprendizaje automático
Series de tiempo
Predicción de temperatura
Información espacial
Ventanas de tiempo
Clima
Meteorología
ClimateDL
XGBoost
WaveNet
url https://hdl.handle.net/20.500.12008/42433