Approximation and interpolation of divergence free flows.

Tempone, Raúl F.

Supervisor(es): Oppelstrup, Jesper

Resumen:

In many applications like meteorology, atmospheric pollution studies, eolic energy prospection, estimation of instantaneous velocity fields etc., one faces the problem of estimating a velocity field that is assumed to be incompressible. Very often the available data contains just a few and sparse velocity measurements and may be some boundary conditions imposed by solid boundaries. This inverse problem is studied here, and a new method to provide a numerical solution is presented. It is based on the Fourier transform, and allows to include the incompressibility constraint in a simple way, leading to an unconstrained least squares formulation, usually ill-posed. The Tikhonov regularization is applied to stabilize the solution, as well as to provide some smoothness in the estimated fow. As a consequence, the numerical solution will generally approximate the measurements up to a threshold given by the size of the regularization parameter. Moreover, if the available velocity measurements come from a smooth velocity field then the numerical solution can be usually constructed using just a small number of Fourier terms. The choice of the regularization parameter is done using the L curve method, balancing the perturbation and regularization contributions to the error. Perturbation bounds (i.e.), bounds for the condition number of the matrix from the Least Squares formulation are included. Numerical experiments with test problems and real data from the southern part of Uruguay are carried out. In addition, the results are compared with related work and the results are satisfactory.


Detalles Bibliográficos
1999
Incompressible flow
Mass consistent models
Inverse problems
Ill-posed problems
Regularization methods
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/24377
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523175869710336
author Tempone, Raúl F.
author_facet Tempone, Raúl F.
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
d77747f0b79dbc4c411d2260a3d95cd2
1996b8461bc290aef6a27d78c67b6b52
be2d5e7801e955aec52a60af224353e4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/24377/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/24377/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/24377/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/24377/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/24377/1/Tem99.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Tempone Raúl F. Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creator.advisor.none.fl_str_mv Oppelstrup, Jesper
dc.creator.none.fl_str_mv Tempone, Raúl F.
dc.date.accessioned.none.fl_str_mv 2020-06-19T16:41:23Z
dc.date.available.none.fl_str_mv 2020-06-19T16:41:23Z
dc.date.issued.none.fl_str_mv 1999
dc.description.abstract.none.fl_txt_mv In many applications like meteorology, atmospheric pollution studies, eolic energy prospection, estimation of instantaneous velocity fields etc., one faces the problem of estimating a velocity field that is assumed to be incompressible. Very often the available data contains just a few and sparse velocity measurements and may be some boundary conditions imposed by solid boundaries. This inverse problem is studied here, and a new method to provide a numerical solution is presented. It is based on the Fourier transform, and allows to include the incompressibility constraint in a simple way, leading to an unconstrained least squares formulation, usually ill-posed. The Tikhonov regularization is applied to stabilize the solution, as well as to provide some smoothness in the estimated fow. As a consequence, the numerical solution will generally approximate the measurements up to a threshold given by the size of the regularization parameter. Moreover, if the available velocity measurements come from a smooth velocity field then the numerical solution can be usually constructed using just a small number of Fourier terms. The choice of the regularization parameter is done using the L curve method, balancing the perturbation and regularization contributions to the error. Perturbation bounds (i.e.), bounds for the condition number of the matrix from the Least Squares formulation are included. Numerical experiments with test problems and real data from the southern part of Uruguay are carried out. In addition, the results are compared with related work and the results are satisfactory.
dc.format.extent.es.fl_str_mv 95 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Tempone, R. Approximation and interpolation of divergence free flows [en línea] Tesis de maestría. Montevideo : Udelar. FI, 1999.
dc.identifier.issn.none.fl_str_mv 1688-2792
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/24377
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv Udelar.FI.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.en.fl_str_mv Incompressible flow
Mass consistent models
Inverse problems
Ill-posed problems
Regularization methods
dc.title.none.fl_str_mv Approximation and interpolation of divergence free flows.
dc.type.es.fl_str_mv Tesis de maestría
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description In many applications like meteorology, atmospheric pollution studies, eolic energy prospection, estimation of instantaneous velocity fields etc., one faces the problem of estimating a velocity field that is assumed to be incompressible. Very often the available data contains just a few and sparse velocity measurements and may be some boundary conditions imposed by solid boundaries. This inverse problem is studied here, and a new method to provide a numerical solution is presented. It is based on the Fourier transform, and allows to include the incompressibility constraint in a simple way, leading to an unconstrained least squares formulation, usually ill-posed. The Tikhonov regularization is applied to stabilize the solution, as well as to provide some smoothness in the estimated fow. As a consequence, the numerical solution will generally approximate the measurements up to a threshold given by the size of the regularization parameter. Moreover, if the available velocity measurements come from a smooth velocity field then the numerical solution can be usually constructed using just a small number of Fourier terms. The choice of the regularization parameter is done using the L curve method, balancing the perturbation and regularization contributions to the error. Perturbation bounds (i.e.), bounds for the condition number of the matrix from the Least Squares formulation are included. Numerical experiments with test problems and real data from the southern part of Uruguay are carried out. In addition, the results are compared with related work and the results are satisfactory.
eu_rights_str_mv openAccess
format masterThesis
id COLIBRI_f0a4e73360250ab1bfbf45757120c123
identifier_str_mv Tempone, R. Approximation and interpolation of divergence free flows [en línea] Tesis de maestría. Montevideo : Udelar. FI, 1999.
1688-2792
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/24377
publishDate 1999
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Tempone Raúl F. Universidad de la República (Uruguay). Facultad de Ingeniería.2020-06-19T16:41:23Z2020-06-19T16:41:23Z1999Tempone, R. Approximation and interpolation of divergence free flows [en línea] Tesis de maestría. Montevideo : Udelar. FI, 1999.1688-2792https://hdl.handle.net/20.500.12008/24377In many applications like meteorology, atmospheric pollution studies, eolic energy prospection, estimation of instantaneous velocity fields etc., one faces the problem of estimating a velocity field that is assumed to be incompressible. Very often the available data contains just a few and sparse velocity measurements and may be some boundary conditions imposed by solid boundaries. This inverse problem is studied here, and a new method to provide a numerical solution is presented. It is based on the Fourier transform, and allows to include the incompressibility constraint in a simple way, leading to an unconstrained least squares formulation, usually ill-posed. The Tikhonov regularization is applied to stabilize the solution, as well as to provide some smoothness in the estimated fow. As a consequence, the numerical solution will generally approximate the measurements up to a threshold given by the size of the regularization parameter. Moreover, if the available velocity measurements come from a smooth velocity field then the numerical solution can be usually constructed using just a small number of Fourier terms. The choice of the regularization parameter is done using the L curve method, balancing the perturbation and regularization contributions to the error. Perturbation bounds (i.e.), bounds for the condition number of the matrix from the Least Squares formulation are included. Numerical experiments with test problems and real data from the southern part of Uruguay are carried out. In addition, the results are compared with related work and the results are satisfactory.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2020-06-17T20:15:54Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Tem99.pdf: 6281553 bytes, checksum: be2d5e7801e955aec52a60af224353e4 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2020-06-19T15:21:01Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Tem99.pdf: 6281553 bytes, checksum: be2d5e7801e955aec52a60af224353e4 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@fic.edu.uy) on 2020-06-19T16:41:23Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Tem99.pdf: 6281553 bytes, checksum: be2d5e7801e955aec52a60af224353e4 (MD5) Previous issue date: 199995 p.application/pdfenengUdelar.FI.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Incompressible flowMass consistent modelsInverse problemsIll-posed problemsRegularization methodsApproximation and interpolation of divergence free flows.Tesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaTempone, Raúl F.Oppelstrup, JesperUniversidad de la República (Uruguay). Facultad de Ingeniería.Magíster en Ingeniería (Ingeniería Matemática)LICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/24377/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/24377/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838687http://localhost:8080/xmlui/bitstream/20.500.12008/24377/3/license_textd77747f0b79dbc4c411d2260a3d95cd2MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/24377/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALTem99.pdfTem99.pdfapplication/pdf6281553http://localhost:8080/xmlui/bitstream/20.500.12008/24377/1/Tem99.pdfbe2d5e7801e955aec52a60af224353e4MD5120.500.12008/243772020-10-28 12:30:16.653oai:colibri.udelar.edu.uy:20.500.12008/24377VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:06.597996COLIBRI - Universidad de la Repúblicafalse
spellingShingle Approximation and interpolation of divergence free flows.
Tempone, Raúl F.
Incompressible flow
Mass consistent models
Inverse problems
Ill-posed problems
Regularization methods
status_str acceptedVersion
title Approximation and interpolation of divergence free flows.
title_full Approximation and interpolation of divergence free flows.
title_fullStr Approximation and interpolation of divergence free flows.
title_full_unstemmed Approximation and interpolation of divergence free flows.
title_short Approximation and interpolation of divergence free flows.
title_sort Approximation and interpolation of divergence free flows.
topic Incompressible flow
Mass consistent models
Inverse problems
Ill-posed problems
Regularization methods
url https://hdl.handle.net/20.500.12008/24377