Approximation and interpolation of divergence free flows.
Supervisor(es): Oppelstrup, Jesper
Resumen:
In many applications like meteorology, atmospheric pollution studies, eolic energy prospection, estimation of instantaneous velocity fields etc., one faces the problem of estimating a velocity field that is assumed to be incompressible. Very often the available data contains just a few and sparse velocity measurements and may be some boundary conditions imposed by solid boundaries. This inverse problem is studied here, and a new method to provide a numerical solution is presented. It is based on the Fourier transform, and allows to include the incompressibility constraint in a simple way, leading to an unconstrained least squares formulation, usually ill-posed. The Tikhonov regularization is applied to stabilize the solution, as well as to provide some smoothness in the estimated fow. As a consequence, the numerical solution will generally approximate the measurements up to a threshold given by the size of the regularization parameter. Moreover, if the available velocity measurements come from a smooth velocity field then the numerical solution can be usually constructed using just a small number of Fourier terms. The choice of the regularization parameter is done using the L curve method, balancing the perturbation and regularization contributions to the error. Perturbation bounds (i.e.), bounds for the condition number of the matrix from the Least Squares formulation are included. Numerical experiments with test problems and real data from the southern part of Uruguay are carried out. In addition, the results are compared with related work and the results are satisfactory.
1999 | |
Incompressible flow Mass consistent models Inverse problems Ill-posed problems Regularization methods |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/24377 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807523175869710336 |
---|---|
author | Tempone, Raúl F. |
author_facet | Tempone, Raúl F. |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a006180e3f5b2ad0b88185d14284c0e0 d77747f0b79dbc4c411d2260a3d95cd2 1996b8461bc290aef6a27d78c67b6b52 be2d5e7801e955aec52a60af224353e4 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/24377/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/24377/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/24377/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/24377/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/24377/1/Tem99.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Tempone Raúl F. Universidad de la República (Uruguay). Facultad de Ingeniería. |
dc.creator.advisor.none.fl_str_mv | Oppelstrup, Jesper |
dc.creator.none.fl_str_mv | Tempone, Raúl F. |
dc.date.accessioned.none.fl_str_mv | 2020-06-19T16:41:23Z |
dc.date.available.none.fl_str_mv | 2020-06-19T16:41:23Z |
dc.date.issued.none.fl_str_mv | 1999 |
dc.description.abstract.none.fl_txt_mv | In many applications like meteorology, atmospheric pollution studies, eolic energy prospection, estimation of instantaneous velocity fields etc., one faces the problem of estimating a velocity field that is assumed to be incompressible. Very often the available data contains just a few and sparse velocity measurements and may be some boundary conditions imposed by solid boundaries. This inverse problem is studied here, and a new method to provide a numerical solution is presented. It is based on the Fourier transform, and allows to include the incompressibility constraint in a simple way, leading to an unconstrained least squares formulation, usually ill-posed. The Tikhonov regularization is applied to stabilize the solution, as well as to provide some smoothness in the estimated fow. As a consequence, the numerical solution will generally approximate the measurements up to a threshold given by the size of the regularization parameter. Moreover, if the available velocity measurements come from a smooth velocity field then the numerical solution can be usually constructed using just a small number of Fourier terms. The choice of the regularization parameter is done using the L curve method, balancing the perturbation and regularization contributions to the error. Perturbation bounds (i.e.), bounds for the condition number of the matrix from the Least Squares formulation are included. Numerical experiments with test problems and real data from the southern part of Uruguay are carried out. In addition, the results are compared with related work and the results are satisfactory. |
dc.format.extent.es.fl_str_mv | 95 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Tempone, R. Approximation and interpolation of divergence free flows [en línea] Tesis de maestría. Montevideo : Udelar. FI, 1999. |
dc.identifier.issn.none.fl_str_mv | 1688-2792 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/24377 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | Udelar.FI. |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.en.fl_str_mv | Incompressible flow Mass consistent models Inverse problems Ill-posed problems Regularization methods |
dc.title.none.fl_str_mv | Approximation and interpolation of divergence free flows. |
dc.type.es.fl_str_mv | Tesis de maestría |
dc.type.none.fl_str_mv | info:eu-repo/semantics/masterThesis |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/acceptedVersion |
description | In many applications like meteorology, atmospheric pollution studies, eolic energy prospection, estimation of instantaneous velocity fields etc., one faces the problem of estimating a velocity field that is assumed to be incompressible. Very often the available data contains just a few and sparse velocity measurements and may be some boundary conditions imposed by solid boundaries. This inverse problem is studied here, and a new method to provide a numerical solution is presented. It is based on the Fourier transform, and allows to include the incompressibility constraint in a simple way, leading to an unconstrained least squares formulation, usually ill-posed. The Tikhonov regularization is applied to stabilize the solution, as well as to provide some smoothness in the estimated fow. As a consequence, the numerical solution will generally approximate the measurements up to a threshold given by the size of the regularization parameter. Moreover, if the available velocity measurements come from a smooth velocity field then the numerical solution can be usually constructed using just a small number of Fourier terms. The choice of the regularization parameter is done using the L curve method, balancing the perturbation and regularization contributions to the error. Perturbation bounds (i.e.), bounds for the condition number of the matrix from the Least Squares formulation are included. Numerical experiments with test problems and real data from the southern part of Uruguay are carried out. In addition, the results are compared with related work and the results are satisfactory. |
eu_rights_str_mv | openAccess |
format | masterThesis |
id | COLIBRI_f0a4e73360250ab1bfbf45757120c123 |
identifier_str_mv | Tempone, R. Approximation and interpolation of divergence free flows [en línea] Tesis de maestría. Montevideo : Udelar. FI, 1999. 1688-2792 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/24377 |
publishDate | 1999 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | Tempone Raúl F. Universidad de la República (Uruguay). Facultad de Ingeniería.2020-06-19T16:41:23Z2020-06-19T16:41:23Z1999Tempone, R. Approximation and interpolation of divergence free flows [en línea] Tesis de maestría. Montevideo : Udelar. FI, 1999.1688-2792https://hdl.handle.net/20.500.12008/24377In many applications like meteorology, atmospheric pollution studies, eolic energy prospection, estimation of instantaneous velocity fields etc., one faces the problem of estimating a velocity field that is assumed to be incompressible. Very often the available data contains just a few and sparse velocity measurements and may be some boundary conditions imposed by solid boundaries. This inverse problem is studied here, and a new method to provide a numerical solution is presented. It is based on the Fourier transform, and allows to include the incompressibility constraint in a simple way, leading to an unconstrained least squares formulation, usually ill-posed. The Tikhonov regularization is applied to stabilize the solution, as well as to provide some smoothness in the estimated fow. As a consequence, the numerical solution will generally approximate the measurements up to a threshold given by the size of the regularization parameter. Moreover, if the available velocity measurements come from a smooth velocity field then the numerical solution can be usually constructed using just a small number of Fourier terms. The choice of the regularization parameter is done using the L curve method, balancing the perturbation and regularization contributions to the error. Perturbation bounds (i.e.), bounds for the condition number of the matrix from the Least Squares formulation are included. Numerical experiments with test problems and real data from the southern part of Uruguay are carried out. In addition, the results are compared with related work and the results are satisfactory.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2020-06-17T20:15:54Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Tem99.pdf: 6281553 bytes, checksum: be2d5e7801e955aec52a60af224353e4 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2020-06-19T15:21:01Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Tem99.pdf: 6281553 bytes, checksum: be2d5e7801e955aec52a60af224353e4 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@fic.edu.uy) on 2020-06-19T16:41:23Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Tem99.pdf: 6281553 bytes, checksum: be2d5e7801e955aec52a60af224353e4 (MD5) Previous issue date: 199995 p.application/pdfenengUdelar.FI.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Incompressible flowMass consistent modelsInverse problemsIll-posed problemsRegularization methodsApproximation and interpolation of divergence free flows.Tesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaTempone, Raúl F.Oppelstrup, JesperUniversidad de la República (Uruguay). Facultad de Ingeniería.Magíster en Ingeniería (Ingeniería Matemática)LICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/24377/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/24377/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838687http://localhost:8080/xmlui/bitstream/20.500.12008/24377/3/license_textd77747f0b79dbc4c411d2260a3d95cd2MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/24377/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALTem99.pdfTem99.pdfapplication/pdf6281553http://localhost:8080/xmlui/bitstream/20.500.12008/24377/1/Tem99.pdfbe2d5e7801e955aec52a60af224353e4MD5120.500.12008/243772020-10-28 12:30:16.653oai:colibri.udelar.edu.uy:20.500.12008/24377VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:06.597996COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Approximation and interpolation of divergence free flows. Tempone, Raúl F. Incompressible flow Mass consistent models Inverse problems Ill-posed problems Regularization methods |
status_str | acceptedVersion |
title | Approximation and interpolation of divergence free flows. |
title_full | Approximation and interpolation of divergence free flows. |
title_fullStr | Approximation and interpolation of divergence free flows. |
title_full_unstemmed | Approximation and interpolation of divergence free flows. |
title_short | Approximation and interpolation of divergence free flows. |
title_sort | Approximation and interpolation of divergence free flows. |
topic | Incompressible flow Mass consistent models Inverse problems Ill-posed problems Regularization methods |
url | https://hdl.handle.net/20.500.12008/24377 |