Online coordinate descent for adaptive estimation of sparse signals
Resumen:
Two low-complexity sparsity-aware recursive schemes are developed for real-time adaptive signal processing. Both rely on a novel online coordinate descent algorithm which minimizes a time-weighted least-squares cost penalized with the scaled lscr1 norm of the unknown parameters. In addition to computational savings offered when processing time-invariant sparse parameter vectors, both schemes can be used for tracking slowly varying sparse signals. Analysis and preliminary simulations confirm that when the true signal is sparse the proposed estimators converge to a time-weighted least-absolute shrinkage and selection operator, and both outperform sparsity-agnostic recursive least-squares alternatives
2009 | |
Sistemas y Control | |
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/38633 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Resultados similares
-
Sparse structural equation models and nonparametric tensor approximation for gene regulatory networks
Autor(es):: Bazerque, Juan Andrés
Fecha de publicación:: (2013) -
Inference of gene regulatory networks with sparse structural equation models exploiting genetic perturbations
Autor(es):: Cai, Xiaodong
Fecha de publicación:: (2013) -
Implementation of adaptive logic networks on an FPGA board
Autor(es):: de la Vega, Roberto J
Fecha de publicación:: (1998) -
Distributed sparse linear regression
Autor(es):: Mateos, Gonzalo
Fecha de publicación:: (2010) -
Convergencia y transitorios abruptos en la identificación adaptable de sistemas
Autor(es):: España, Martín D
Fecha de publicación:: (1989)