Can we make quantitative predictions for relative yield with incomplete knowledge of model parameters?
Resumen:
A main limitation in community ecology for making quantitative predictions on species abundances is often an incomplete knowledge of the parameters of the population dynamics models. The simplest linear Lotka-Volterra competition equations (LLVCE) for S species require S2 parameters to solve for equilibrium abundances. The same order of experiments are required to estimate these parameters, namely the carrying capacities (from monoculture experiments) and the competition coefficients (from biculture or pairwise experiments in addition to monoculture ones). For communities with large species richness S it is practically impossible to perform all these experiments. Therefore, with an incomplete knowledge of model parameters it seems more reasonable to attempt to predict aggregated or mean quantities, defined for the whole community of competing species, rather than making more detailed predictions, like the abundance of each species. Here we test a recently derived analytical approximation for predicting the Relative Yield Total (RYT) and the Mean Relative Yield (MRY) as functions of the mean value of the interspecific competition matrix a and the species richness S. These formulae with only a fraction of the model parameters, are able to predict accurately empirical measurements covering a wide variety of taxa such as algae, vascular plants, protozoa. We discuss the dependence of these global community quantities on the species richness and the intensity of competition and possible applications are pointed out.
2018 | |
Biodiversity–ecosystem functioning experiments Quantitative Lotka-Volterra competition theory |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/31683 | |
Acceso abierto | |
Licencia Creative Commons Atribución (CC - By 4.0) |
_version_ | 1807522789940264960 |
---|---|
author | Fort, Hugo |
author_facet | Fort, Hugo |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a0ebbeafb9d2ec7cbb19d7137ebc392c d606c60c5d78967c4ed7a729e5bb402f 9fdbed07f52437945402c4e70fa4773e 67581f069ade551a17298bce97d3a72e |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/31683/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/31683/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/31683/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/31683/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/31683/1/10.1556168.2018.19.2.12.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Fort Hugo, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física. |
dc.creator.none.fl_str_mv | Fort, Hugo |
dc.date.accessioned.none.fl_str_mv | 2022-05-27T12:46:13Z |
dc.date.available.none.fl_str_mv | 2022-05-27T12:46:13Z |
dc.date.issued.none.fl_str_mv | 2018 |
dc.description.abstract.none.fl_txt_mv | A main limitation in community ecology for making quantitative predictions on species abundances is often an incomplete knowledge of the parameters of the population dynamics models. The simplest linear Lotka-Volterra competition equations (LLVCE) for S species require S2 parameters to solve for equilibrium abundances. The same order of experiments are required to estimate these parameters, namely the carrying capacities (from monoculture experiments) and the competition coefficients (from biculture or pairwise experiments in addition to monoculture ones). For communities with large species richness S it is practically impossible to perform all these experiments. Therefore, with an incomplete knowledge of model parameters it seems more reasonable to attempt to predict aggregated or mean quantities, defined for the whole community of competing species, rather than making more detailed predictions, like the abundance of each species. Here we test a recently derived analytical approximation for predicting the Relative Yield Total (RYT) and the Mean Relative Yield (MRY) as functions of the mean value of the interspecific competition matrix a and the species richness S. These formulae with only a fraction of the model parameters, are able to predict accurately empirical measurements covering a wide variety of taxa such as algae, vascular plants, protozoa. We discuss the dependence of these global community quantities on the species richness and the intensity of competition and possible applications are pointed out. |
dc.format.extent.es.fl_str_mv | 4 h |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Fort, H. "Can we make quantitative predictions for relative yield with incomplete knowledge of model parameters?". Community Ecology. [en línea] 2018, 19: 199–202. 4 h. |
dc.identifier.doi.none.fl_str_mv | 10.1556/168.2018.19.2.12 |
dc.identifier.issn.none.fl_str_mv | 1585-8553 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/31683 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | Akadémiai Kiadó, Budapest |
dc.relation.ispartof.es.fl_str_mv | Community Ecology, 2018, 19: 199–202 |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución (CC - By 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.en.fl_str_mv | Biodiversity–ecosystem functioning experiments Quantitative Lotka-Volterra competition theory |
dc.title.none.fl_str_mv | Can we make quantitative predictions for relative yield with incomplete knowledge of model parameters? |
dc.type.es.fl_str_mv | Artículo |
dc.type.none.fl_str_mv | info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | A main limitation in community ecology for making quantitative predictions on species abundances is often an incomplete knowledge of the parameters of the population dynamics models. The simplest linear Lotka-Volterra competition equations (LLVCE) for S species require S2 parameters to solve for equilibrium abundances. The same order of experiments are required to estimate these parameters, namely the carrying capacities (from monoculture experiments) and the competition coefficients (from biculture or pairwise experiments in addition to monoculture ones). For communities with large species richness S it is practically impossible to perform all these experiments. Therefore, with an incomplete knowledge of model parameters it seems more reasonable to attempt to predict aggregated or mean quantities, defined for the whole community of competing species, rather than making more detailed predictions, like the abundance of each species. Here we test a recently derived analytical approximation for predicting the Relative Yield Total (RYT) and the Mean Relative Yield (MRY) as functions of the mean value of the interspecific competition matrix a and the species richness S. These formulae with only a fraction of the model parameters, are able to predict accurately empirical measurements covering a wide variety of taxa such as algae, vascular plants, protozoa. We discuss the dependence of these global community quantities on the species richness and the intensity of competition and possible applications are pointed out. |
eu_rights_str_mv | openAccess |
format | article |
id | COLIBRI_ef25b09d7cf1c4ea5eb8f8613963dc96 |
identifier_str_mv | Fort, H. "Can we make quantitative predictions for relative yield with incomplete knowledge of model parameters?". Community Ecology. [en línea] 2018, 19: 199–202. 4 h. 1585-8553 10.1556/168.2018.19.2.12 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/31683 |
publishDate | 2018 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución (CC - By 4.0) |
spelling | Fort Hugo, Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Física.2022-05-27T12:46:13Z2022-05-27T12:46:13Z2018Fort, H. "Can we make quantitative predictions for relative yield with incomplete knowledge of model parameters?". Community Ecology. [en línea] 2018, 19: 199–202. 4 h.1585-8553https://hdl.handle.net/20.500.12008/3168310.1556/168.2018.19.2.12A main limitation in community ecology for making quantitative predictions on species abundances is often an incomplete knowledge of the parameters of the population dynamics models. The simplest linear Lotka-Volterra competition equations (LLVCE) for S species require S2 parameters to solve for equilibrium abundances. The same order of experiments are required to estimate these parameters, namely the carrying capacities (from monoculture experiments) and the competition coefficients (from biculture or pairwise experiments in addition to monoculture ones). For communities with large species richness S it is practically impossible to perform all these experiments. Therefore, with an incomplete knowledge of model parameters it seems more reasonable to attempt to predict aggregated or mean quantities, defined for the whole community of competing species, rather than making more detailed predictions, like the abundance of each species. Here we test a recently derived analytical approximation for predicting the Relative Yield Total (RYT) and the Mean Relative Yield (MRY) as functions of the mean value of the interspecific competition matrix a and the species richness S. These formulae with only a fraction of the model parameters, are able to predict accurately empirical measurements covering a wide variety of taxa such as algae, vascular plants, protozoa. We discuss the dependence of these global community quantities on the species richness and the intensity of competition and possible applications are pointed out.Submitted by Faget Cecilia (lfaget@fcien.edu.uy) on 2022-05-27T12:37:30Z No. of bitstreams: 2 license_rdf: 19875 bytes, checksum: 9fdbed07f52437945402c4e70fa4773e (MD5) 10.1556168.2018.19.2.12.pdf: 1067858 bytes, checksum: 67581f069ade551a17298bce97d3a72e (MD5)Approved for entry into archive by Faget Cecilia (lfaget@fcien.edu.uy) on 2022-05-27T12:38:00Z (GMT) No. of bitstreams: 2 license_rdf: 19875 bytes, checksum: 9fdbed07f52437945402c4e70fa4773e (MD5) 10.1556168.2018.19.2.12.pdf: 1067858 bytes, checksum: 67581f069ade551a17298bce97d3a72e (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2022-05-27T12:46:13Z (GMT). No. of bitstreams: 2 license_rdf: 19875 bytes, checksum: 9fdbed07f52437945402c4e70fa4773e (MD5) 10.1556168.2018.19.2.12.pdf: 1067858 bytes, checksum: 67581f069ade551a17298bce97d3a72e (MD5) Previous issue date: 20184 happlication/pdfenengAkadémiai Kiadó, BudapestCommunity Ecology, 2018, 19: 199–202Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución (CC - By 4.0)Biodiversity–ecosystem functioning experimentsQuantitative Lotka-Volterra competition theoryCan we make quantitative predictions for relative yield with incomplete knowledge of model parameters?Artículoinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaFort, HugoLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/31683/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-844http://localhost:8080/xmlui/bitstream/20.500.12008/31683/2/license_urla0ebbeafb9d2ec7cbb19d7137ebc392cMD52license_textlicense_texttext/html; charset=utf-838395http://localhost:8080/xmlui/bitstream/20.500.12008/31683/3/license_textd606c60c5d78967c4ed7a729e5bb402fMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-819875http://localhost:8080/xmlui/bitstream/20.500.12008/31683/4/license_rdf9fdbed07f52437945402c4e70fa4773eMD54ORIGINAL10.1556168.2018.19.2.12.pdf10.1556168.2018.19.2.12.pdfapplication/pdf1067858http://localhost:8080/xmlui/bitstream/20.500.12008/31683/1/10.1556168.2018.19.2.12.pdf67581f069ade551a17298bce97d3a72eMD5120.500.12008/316832022-06-02 16:25:25.866oai:colibri.udelar.edu.uy:20.500.12008/31683VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:28:38.677276COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Can we make quantitative predictions for relative yield with incomplete knowledge of model parameters? Fort, Hugo Biodiversity–ecosystem functioning experiments Quantitative Lotka-Volterra competition theory |
status_str | publishedVersion |
title | Can we make quantitative predictions for relative yield with incomplete knowledge of model parameters? |
title_full | Can we make quantitative predictions for relative yield with incomplete knowledge of model parameters? |
title_fullStr | Can we make quantitative predictions for relative yield with incomplete knowledge of model parameters? |
title_full_unstemmed | Can we make quantitative predictions for relative yield with incomplete knowledge of model parameters? |
title_short | Can we make quantitative predictions for relative yield with incomplete knowledge of model parameters? |
title_sort | Can we make quantitative predictions for relative yield with incomplete knowledge of model parameters? |
topic | Biodiversity–ecosystem functioning experiments Quantitative Lotka-Volterra competition theory |
url | https://hdl.handle.net/20.500.12008/31683 |