Group-lasso on splines for spectrum cartography

Bazerque, Juan Andrés - Mateos, Gonzalo - Giannakis, Georgios B

Resumen:

The unceasing demand for continuous situational awareness calls for innovative and large-scale signal processing algorithms, complemented by collaborative and adaptive sensing platforms to accomplish the objectives of layered sensing and control. Towards this goal, the present paper develops a spline-based approach to field estimation, which relies on a basis expansion model of the field of interest. The model entails known bases, weighted by generic functions estimated from the field's noisy samples. A novel field estimator is developed based on a regularized variational least-squares (LS) criterion that yields finite-dimensional (function) estimates spanned by thin-plate splines. Robustness considerations motivate well the adoption of an overcomplete set of (possibly overlapping) basis functions, while a sparsifying regularizer augmenting the LS cost endows the estimator with the ability to select a few of these bases that “better” explain the data. This parsimonious field representation becomes possible, because the sparsity-aware spline-based method of this paper induces a group-Lasso estimator for the coefficients of the thin-plate spline expansions per basis. A distributed algorithm is also developed to obtain the group-Lasso estimator using a network of wireless sensors, or, using multiple processors to balance the load of a single computational unit. The novel spline-based approach is motivated by a spectrum cartography application, in which a set of sensing cognitive radios collaborate to estimate the distribution of RF power in space and frequency. Computer simulations and tests on real data corroborate that the estimated power spectrum density atlas yields the desired RF state awareness, since the maps reveal spatial locations where idle frequency bands can be reused for transmission, even when fading and shadowing effects are pronounced


Detalles Bibliográficos
2011
Sparsity
Splines
(group-)Lasso
Field estimation
Cognitive radio sensing
Optimization
Sistemas y Control
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/41144
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807522937894338560
author Bazerque, Juan Andrés
author2 Mateos, Gonzalo
Giannakis, Georgios B
author2_role author
author
author_facet Bazerque, Juan Andrés
Mateos, Gonzalo
Giannakis, Georgios B
author_role author
bitstream.checksum.fl_str_mv 7f2e2c17ef6585de66da58d1bfa8b5e1
9833653f73f7853880c94a6fead477b1
4afdbb8c545fd630ea7db775da747b2f
9da0b6dfac957114c6a7714714b86306
26e8ae29cb21afa98e9164e40f3dce68
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/41144/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/41144/2/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/41144/3/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/41144/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/41144/1/BMG11.pdf
collection COLIBRI
dc.creator.none.fl_str_mv Bazerque, Juan Andrés
Mateos, Gonzalo
Giannakis, Georgios B
dc.date.accessioned.none.fl_str_mv 2023-11-14T17:04:30Z
dc.date.available.none.fl_str_mv 2023-11-14T17:04:30Z
dc.date.issued.es.fl_str_mv 2011
dc.date.submitted.es.fl_str_mv 20231114
dc.description.abstract.none.fl_txt_mv The unceasing demand for continuous situational awareness calls for innovative and large-scale signal processing algorithms, complemented by collaborative and adaptive sensing platforms to accomplish the objectives of layered sensing and control. Towards this goal, the present paper develops a spline-based approach to field estimation, which relies on a basis expansion model of the field of interest. The model entails known bases, weighted by generic functions estimated from the field's noisy samples. A novel field estimator is developed based on a regularized variational least-squares (LS) criterion that yields finite-dimensional (function) estimates spanned by thin-plate splines. Robustness considerations motivate well the adoption of an overcomplete set of (possibly overlapping) basis functions, while a sparsifying regularizer augmenting the LS cost endows the estimator with the ability to select a few of these bases that “better” explain the data. This parsimonious field representation becomes possible, because the sparsity-aware spline-based method of this paper induces a group-Lasso estimator for the coefficients of the thin-plate spline expansions per basis. A distributed algorithm is also developed to obtain the group-Lasso estimator using a network of wireless sensors, or, using multiple processors to balance the load of a single computational unit. The novel spline-based approach is motivated by a spectrum cartography application, in which a set of sensing cognitive radios collaborate to estimate the distribution of RF power in space and frequency. Computer simulations and tests on real data corroborate that the estimated power spectrum density atlas yields the desired RF state awareness, since the maps reveal spatial locations where idle frequency bands can be reused for transmission, even when fading and shadowing effects are pronounced
dc.identifier.citation.es.fl_str_mv Bazerque, J, Mateos, G, Giannakis, G.. “Group-lasso on splines for spectrum cartography” [Preprint] Publicado en IEEE Transactions on Signal Processing, 2011 v. 59, no. 10. DOI: 10.1109/TSP.2011.2160858
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/41144
dc.language.iso.none.fl_str_mv en
eng
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Sparsity
Splines
(group-)Lasso
Field estimation
Cognitive radio sensing
Optimization
dc.subject.other.es.fl_str_mv Sistemas y Control
dc.title.none.fl_str_mv Group-lasso on splines for spectrum cartography
dc.type.es.fl_str_mv Preprint
dc.type.none.fl_str_mv info:eu-repo/semantics/preprint
dc.type.version.none.fl_str_mv info:eu-repo/semantics/submittedVersion
description The unceasing demand for continuous situational awareness calls for innovative and large-scale signal processing algorithms, complemented by collaborative and adaptive sensing platforms to accomplish the objectives of layered sensing and control. Towards this goal, the present paper develops a spline-based approach to field estimation, which relies on a basis expansion model of the field of interest. The model entails known bases, weighted by generic functions estimated from the field's noisy samples. A novel field estimator is developed based on a regularized variational least-squares (LS) criterion that yields finite-dimensional (function) estimates spanned by thin-plate splines. Robustness considerations motivate well the adoption of an overcomplete set of (possibly overlapping) basis functions, while a sparsifying regularizer augmenting the LS cost endows the estimator with the ability to select a few of these bases that “better” explain the data. This parsimonious field representation becomes possible, because the sparsity-aware spline-based method of this paper induces a group-Lasso estimator for the coefficients of the thin-plate spline expansions per basis. A distributed algorithm is also developed to obtain the group-Lasso estimator using a network of wireless sensors, or, using multiple processors to balance the load of a single computational unit. The novel spline-based approach is motivated by a spectrum cartography application, in which a set of sensing cognitive radios collaborate to estimate the distribution of RF power in space and frequency. Computer simulations and tests on real data corroborate that the estimated power spectrum density atlas yields the desired RF state awareness, since the maps reveal spatial locations where idle frequency bands can be reused for transmission, even when fading and shadowing effects are pronounced
eu_rights_str_mv openAccess
format preprint
id COLIBRI_eeed0f0b9ea9d43df7b05da510102083
identifier_str_mv Bazerque, J, Mateos, G, Giannakis, G.. “Group-lasso on splines for spectrum cartography” [Preprint] Publicado en IEEE Transactions on Signal Processing, 2011 v. 59, no. 10. DOI: 10.1109/TSP.2011.2160858
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/41144
publishDate 2011
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling 2023-11-14T17:04:30Z2023-11-14T17:04:30Z201120231114Bazerque, J, Mateos, G, Giannakis, G.. “Group-lasso on splines for spectrum cartography” [Preprint] Publicado en IEEE Transactions on Signal Processing, 2011 v. 59, no. 10. DOI: 10.1109/TSP.2011.2160858https://hdl.handle.net/20.500.12008/41144The unceasing demand for continuous situational awareness calls for innovative and large-scale signal processing algorithms, complemented by collaborative and adaptive sensing platforms to accomplish the objectives of layered sensing and control. Towards this goal, the present paper develops a spline-based approach to field estimation, which relies on a basis expansion model of the field of interest. The model entails known bases, weighted by generic functions estimated from the field's noisy samples. A novel field estimator is developed based on a regularized variational least-squares (LS) criterion that yields finite-dimensional (function) estimates spanned by thin-plate splines. Robustness considerations motivate well the adoption of an overcomplete set of (possibly overlapping) basis functions, while a sparsifying regularizer augmenting the LS cost endows the estimator with the ability to select a few of these bases that “better” explain the data. This parsimonious field representation becomes possible, because the sparsity-aware spline-based method of this paper induces a group-Lasso estimator for the coefficients of the thin-plate spline expansions per basis. A distributed algorithm is also developed to obtain the group-Lasso estimator using a network of wireless sensors, or, using multiple processors to balance the load of a single computational unit. The novel spline-based approach is motivated by a spectrum cartography application, in which a set of sensing cognitive radios collaborate to estimate the distribution of RF power in space and frequency. Computer simulations and tests on real data corroborate that the estimated power spectrum density atlas yields the desired RF state awareness, since the maps reveal spatial locations where idle frequency bands can be reused for transmission, even when fading and shadowing effects are pronouncedMade available in DSpace on 2023-11-14T17:04:30Z (GMT). No. of bitstreams: 5 BMG11.pdf: 378501 bytes, checksum: 26e8ae29cb21afa98e9164e40f3dce68 (MD5) license_text: 21936 bytes, checksum: 9833653f73f7853880c94a6fead477b1 (MD5) license_url: 49 bytes, checksum: 4afdbb8c545fd630ea7db775da747b2f (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) license.txt: 4194 bytes, checksum: 7f2e2c17ef6585de66da58d1bfa8b5e1 (MD5) Previous issue date: 2011enengLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)SparsitySplines(group-)LassoField estimationCognitive radio sensingOptimizationSistemas y ControlGroup-lasso on splines for spectrum cartographyPreprintinfo:eu-repo/semantics/preprintinfo:eu-repo/semantics/submittedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaBazerque, Juan AndrésMateos, GonzaloGiannakis, Georgios BLICENSElicense.txttext/plain4194http://localhost:8080/xmlui/bitstream/20.500.12008/41144/5/license.txt7f2e2c17ef6585de66da58d1bfa8b5e1MD55CC-LICENSElicense_textapplication/octet-stream21936http://localhost:8080/xmlui/bitstream/20.500.12008/41144/2/license_text9833653f73f7853880c94a6fead477b1MD52license_urlapplication/octet-stream49http://localhost:8080/xmlui/bitstream/20.500.12008/41144/3/license_url4afdbb8c545fd630ea7db775da747b2fMD53license_rdfapplication/octet-stream23148http://localhost:8080/xmlui/bitstream/20.500.12008/41144/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALBMG11.pdfapplication/pdf378501http://localhost:8080/xmlui/bitstream/20.500.12008/41144/1/BMG11.pdf26e8ae29cb21afa98e9164e40f3dce68MD5120.500.12008/411442023-11-14 14:04:30.424oai:colibri.udelar.edu.uy:20.500.12008/41144VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDvv71ibGljYS4gKFJlcy4gTu+/vSA5MSBkZSBDLkQuQy4gZGUgOC9JSUkvMTk5NCDvv70gRC5PLiA3L0lWLzE5OTQpIHkgIHBvciBsYSBPcmRlbmFuemEgZGVsIFJlcG9zaXRvcmlvIEFiaWVydG8gZGUgbGEgVW5pdmVyc2lkYWQgZGUgbGEgUmVw77+9YmxpY2EgKFJlcy4gTu+/vSAxNiBkZSBDLkQuQy4gZGUgMDcvMTAvMjAxNCkuIAoKQWNlcHRhbmRvIGVsIGF1dG9yIGVzdG9zIHTvv71ybWlub3MgeSBjb25kaWNpb25lcyBkZSBkZXDvv71zaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcO+/vWJsaWNhIHByb2NlZGVy77+9IGE6ICAKCmEpIGFyY2hpdmFyIG3vv71zIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nvv71uCmIpIGNvbnZlcnRpciBsYSBvYnJhIGEgb3Ryb3MgZm9ybWF0b3Mgc2kgZnVlcmEgbmVjZXNhcmlvICBwYXJhIGZhY2lsaXRhciBzdSBwcmVzZXJ2YWNp77+9biB5IGFjY2VzaWJpbGlkYWQgc2luIGFsdGVyYXIgc3UgY29udGVuaWRvLgpjKSByZWFsaXphciBsYSBjb211bmljYWNp77+9biBw77+9YmxpY2EgeSBkaXNwb25lciBlbCBhY2Nlc28gbGlicmUgeSBncmF0dWl0byBhIHRyYXbvv71zIGRlIEludGVybmV0IG1lZGlhbnRlIGxhIHB1YmxpY2Fjae+/vW4gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcu+/vSBzb2xpY2l0YXIgdW4gcGVy77+9b2RvIGRlIGVtYmFyZ28gc29icmUgbGEgZGlzcG9uaWJpbGlkYWQgcO+/vWJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFy77+9IGEgcGFydGlyIGRlIGxhIGFjZXB0YWNp77+9biBkZSBlc3RlIGRvY3VtZW50byB5IGhhc3RhIGxhIGZlY2hhIHF1ZSBpbmRpcXVlIC4KCkVsIGF1dG9yIGFzZWd1cmEgcXVlIGxhIG9icmEgbm8gaW5mcmlnZSBuaW5n77+9biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdO+/vSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyB5IHJlY29ub2NpZG8gZW4gZWwgdGV4dG8gbyBjb250ZW5pZG8gZGVsIGRvY3VtZW50byBkZXBvc2l0YWRvIGVuIGVsIFJlcG9zaXRvcmlvLgoKRW4gb2JyYXMgZGUgYXV0b3Lvv71hIG3vv71sdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDvv71zdGUgZWwg77+9bmljbyByZXNwb25zYWJsZSBmcmVudGUgYSBjdWFscXVpZXIgdGlwbyBkZSByZWNsYW1hY2nvv71uIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLvv70gcmVzcG9uc2FibGUgZGVsIGNvbnRlbmlkbyBkZSBsb3MgZG9jdW1lbnRvcyBxdWUgZGVwb3NpdGEuIExhIFVERUxBUiBubyBzZXLvv70gcmVzcG9uc2FibGUgcG9yIGxhcyBldmVudHVhbGVzIHZpb2xhY2lvbmVzIGFsIGRlcmVjaG8gZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIHF1ZSBwdWVkYSBpbmN1cnJpciBlbCBhdXRvci4KCkFudGUgY3VhbHF1aWVyIGRlbnVuY2lhIGRlIHZpb2xhY2nvv71uIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFy77+9IHRvZGFzIGxhcyBtZWRpZGFzIG5lY2VzYXJpYXMgcGFyYSBldml0YXIgbGEgY29udGludWFjae+/vW4gZGUgZGljaGEgaW5mcmFjY2nvv71uLCBsYXMgcXVlIHBvZHLvv71uIGluY2x1aXIgZWwgcmV0aXJvIGRlbCBhY2Nlc28gYSBsb3MgY29udGVuaWRvcyB5L28gbWV0YWRhdG9zIGRlbCBkb2N1bWVudG8gcmVzcGVjdGl2by4KCkxhIG9icmEgc2UgcG9uZHLvv70gYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28gYSB0cmF277+9cyBkZSBsYXMgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMsIGVsIGF1dG9yIHBvZHLvv70gc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjae+/vW4gKENDIC0gQnkpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgc2llbXByZSBxdWUgc2UgcmVjb25vemNhIGFsIGF1dG9yLgoKQXRyaWJ1Y2nvv71uIO+/vSBDb21wYXJ0aXIgSWd1YWwgKENDIC0gQnktU0EpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgcGVybyBsYSBkaXN0cmlidWNp77+9biBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTvv71udGljYSBhIGxhIGRlIGxhIG9icmEgb3JpZ2luYWwsIHJlY29ub2NpZW5kbyBhIGxvcyBhdXRvcmVzLgoKQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwgKENDIC0gQnktTkMpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBzaWVtcHJlIHkgY3VhbmRvIGVzb3MgdXNvcyBubyB0ZW5nYW4gZmluZXMgY29tZXJjaWFsZXMsIHJlY29ub2NpZW5kbyBhbCBhdXRvci4KCkF0cmlidWNp77+9biDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNp77+9biDvv70gTm8gQ29tZXJjaWFsIO+/vSBDb21wYXJ0aXIgSWd1YWwgKENDIO+/vSBCeS1OQy1TQSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIHNpZW1wcmUgeSBjdWFuZG8gZXNvcyB1c29zIG5vIHRlbmdhbiBmaW5lcyBjb21lcmNpYWxlcyB5IGxhIGRpc3RyaWJ1Y2nvv71uIGRlIGxhcyBvYnJhcyBkZXJpdmFkYXMgc2UgaGFnYSBtZWRpYW50ZSBsaWNlbmNpYSBpZO+/vW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjae+/vW4g77+9IE5vIENvbWVyY2lhbCDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1OQy1ORCk6IFBlcm1pdGUgdXNhciBsYSBvYnJhLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMgeSBubyBzZSBwZXJtaXRlIHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkxvcyB1c29zIHByZXZpc3RvcyBlbiBsYXMgbGljZW5jaWFzIGluY2x1eWVuIGxhIGVuYWplbmFjae+/vW4sIHJlcHJvZHVjY2nvv71uLCBjb211bmljYWNp77+9biwgcHVibGljYWNp77+9biwgZGlzdHJpYnVjae+/vW4geSBwdWVzdGEgYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28uIExhIGNyZWFjae+/vW4gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nvv71uLCB0cmFkdWNjae+/vW4geSBlbCByZW1peC4KCkN1YW5kbyBzZSBzZWxlY2Npb25lIHVuYSBsaWNlbmNpYSBxdWUgaGFiaWxpdGUgdXNvcyBjb21lcmNpYWxlcywgZWwgZGVw77+9c2l0byBkZWJlcu+/vSBzZXIgYWNvbXBh77+9YWRvIGRlbCBhdmFsIGRlbCBqZXJhcmNhIG3vv714aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCgoKCgoKCgoKUniversidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:36.908110COLIBRI - Universidad de la Repúblicafalse
spellingShingle Group-lasso on splines for spectrum cartography
Bazerque, Juan Andrés
Sparsity
Splines
(group-)Lasso
Field estimation
Cognitive radio sensing
Optimization
Sistemas y Control
status_str submittedVersion
title Group-lasso on splines for spectrum cartography
title_full Group-lasso on splines for spectrum cartography
title_fullStr Group-lasso on splines for spectrum cartography
title_full_unstemmed Group-lasso on splines for spectrum cartography
title_short Group-lasso on splines for spectrum cartography
title_sort Group-lasso on splines for spectrum cartography
topic Sparsity
Splines
(group-)Lasso
Field estimation
Cognitive radio sensing
Optimization
Sistemas y Control
url https://hdl.handle.net/20.500.12008/41144