Uso de aceleradores de hardware en sistemas de bases de datos relacionales
Supervisor(es): Etcheverry, Lorena - Ezzatti, Pablo
Resumen:
En los últimos años el uso de coprocesadores gráficos, o GPUs por su sigla en inglés, para acelerar la resolución de problemas de propósito general ha ido en aumento. Estos dispositivos han fomentado la evolución del uso de arquitecturas de cómputo homogéneas y con un solo procesador a plataformas de hardware heterogéneas y masivamente paralelas. Los motores de bases de datos no son ajenos a esta tendencia. Notar que los sistemas manejadores de bases de datos (DBMS) requieren de grandes volúmenes de cómputo. Los manejadores que aprovechan las GPUs, conocidos como GDBMS, en general sacan partido de las bondades de estos dispositivos en contextos de consultas que implican grandes volúmenes de datos. En este trabajo se relevan GDBMS existentes, analizando oportunidades de mejora, priorizando aquellos GDBMS que sean capaces de incorporar técnicas de aprendizaje automático para determinar qué dispositivo utilizar en cada contexto. En particular, en este proyecto se propone trabajar sobre un manejador existente (CoGaDB), y más específicamente en una versión que fue extendida en un proyecto de grado anterior, con el fin de mejorar el aprovechamiento de los recursos ociosos (y, por tanto, reducir los tiempos de ejecución de consultas con altos requerimientos de cómputo). El principal foco del trabajo es el desarrollo de una heurística para automatizar la distribución del trabajo (y datos) entre los diferentes dispositivos de cómputo disponibles en la plataforma de ejecución para consultas del tipo Join. La herramienta desarrollada se basa en el uso de técnicas de aprendizaje automático. La evaluación experimental muestra que, para consultas que involucran columnas con gran cantidad de valores, la utilización del Join híbrido concurrente y el uso de la heurística formulada es fundamental para la obtención de mejores tiempos de ejecución, así como para alcanzar un mejor aprovechamiento de los recursos disponibles.
2019 | |
SISTEMAS DE BASES DE DATOS | |
Español | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/23014 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807523224843452416 |
---|---|
author | Barreiro, Alejandro |
author2 | Cabrera, Anthony |
author2_role | author |
author_facet | Barreiro, Alejandro Cabrera, Anthony |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a006180e3f5b2ad0b88185d14284c0e0 b7a1f0ecb0a08331e6e1cffe9455730a 9da0b6dfac957114c6a7714714b86306 3e13130d498c2ca61817431ef598f9dd |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/23014/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/23014/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/23014/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/23014/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/23014/1/BC19.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Barreiro Alejandro, Universidad de la República (Uruguay). Facultad de Ingeniería Cabrera Anthony, Universidad de la República (Uruguay). Facultad de Ingeniería |
dc.creator.advisor.none.fl_str_mv | Etcheverry, Lorena Ezzatti, Pablo |
dc.creator.none.fl_str_mv | Barreiro, Alejandro Cabrera, Anthony |
dc.date.accessioned.none.fl_str_mv | 2020-02-03T18:34:43Z |
dc.date.available.none.fl_str_mv | 2020-02-03T18:34:43Z |
dc.date.issued.none.fl_str_mv | 2019 |
dc.description.abstract.none.fl_txt_mv | En los últimos años el uso de coprocesadores gráficos, o GPUs por su sigla en inglés, para acelerar la resolución de problemas de propósito general ha ido en aumento. Estos dispositivos han fomentado la evolución del uso de arquitecturas de cómputo homogéneas y con un solo procesador a plataformas de hardware heterogéneas y masivamente paralelas. Los motores de bases de datos no son ajenos a esta tendencia. Notar que los sistemas manejadores de bases de datos (DBMS) requieren de grandes volúmenes de cómputo. Los manejadores que aprovechan las GPUs, conocidos como GDBMS, en general sacan partido de las bondades de estos dispositivos en contextos de consultas que implican grandes volúmenes de datos. En este trabajo se relevan GDBMS existentes, analizando oportunidades de mejora, priorizando aquellos GDBMS que sean capaces de incorporar técnicas de aprendizaje automático para determinar qué dispositivo utilizar en cada contexto. En particular, en este proyecto se propone trabajar sobre un manejador existente (CoGaDB), y más específicamente en una versión que fue extendida en un proyecto de grado anterior, con el fin de mejorar el aprovechamiento de los recursos ociosos (y, por tanto, reducir los tiempos de ejecución de consultas con altos requerimientos de cómputo). El principal foco del trabajo es el desarrollo de una heurística para automatizar la distribución del trabajo (y datos) entre los diferentes dispositivos de cómputo disponibles en la plataforma de ejecución para consultas del tipo Join. La herramienta desarrollada se basa en el uso de técnicas de aprendizaje automático. La evaluación experimental muestra que, para consultas que involucran columnas con gran cantidad de valores, la utilización del Join híbrido concurrente y el uso de la heurística formulada es fundamental para la obtención de mejores tiempos de ejecución, así como para alcanzar un mejor aprovechamiento de los recursos disponibles. |
dc.format.extent.es.fl_str_mv | 114 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Barreiro, A. y Cabrera, A. Uso de aceleradores de hardware en sistemas de bases de datos relacionales [en línea]. Tesis de grado. Montevideo : Udelar. FI. INCO, 2019. |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/23014 |
dc.language.iso.none.fl_str_mv | es spa |
dc.publisher.es.fl_str_mv | Udelar.FI |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.other.es.fl_str_mv | SISTEMAS DE BASES DE DATOS |
dc.title.none.fl_str_mv | Uso de aceleradores de hardware en sistemas de bases de datos relacionales |
dc.type.es.fl_str_mv | Tesis de grado |
dc.type.none.fl_str_mv | info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/acceptedVersion |
description | En los últimos años el uso de coprocesadores gráficos, o GPUs por su sigla en inglés, para acelerar la resolución de problemas de propósito general ha ido en aumento. Estos dispositivos han fomentado la evolución del uso de arquitecturas de cómputo homogéneas y con un solo procesador a plataformas de hardware heterogéneas y masivamente paralelas. Los motores de bases de datos no son ajenos a esta tendencia. Notar que los sistemas manejadores de bases de datos (DBMS) requieren de grandes volúmenes de cómputo. Los manejadores que aprovechan las GPUs, conocidos como GDBMS, en general sacan partido de las bondades de estos dispositivos en contextos de consultas que implican grandes volúmenes de datos. En este trabajo se relevan GDBMS existentes, analizando oportunidades de mejora, priorizando aquellos GDBMS que sean capaces de incorporar técnicas de aprendizaje automático para determinar qué dispositivo utilizar en cada contexto. En particular, en este proyecto se propone trabajar sobre un manejador existente (CoGaDB), y más específicamente en una versión que fue extendida en un proyecto de grado anterior, con el fin de mejorar el aprovechamiento de los recursos ociosos (y, por tanto, reducir los tiempos de ejecución de consultas con altos requerimientos de cómputo). El principal foco del trabajo es el desarrollo de una heurística para automatizar la distribución del trabajo (y datos) entre los diferentes dispositivos de cómputo disponibles en la plataforma de ejecución para consultas del tipo Join. La herramienta desarrollada se basa en el uso de técnicas de aprendizaje automático. La evaluación experimental muestra que, para consultas que involucran columnas con gran cantidad de valores, la utilización del Join híbrido concurrente y el uso de la heurística formulada es fundamental para la obtención de mejores tiempos de ejecución, así como para alcanzar un mejor aprovechamiento de los recursos disponibles. |
eu_rights_str_mv | openAccess |
format | bachelorThesis |
id | COLIBRI_eda0f78b1b7d3b2321291117f330bd88 |
identifier_str_mv | Barreiro, A. y Cabrera, A. Uso de aceleradores de hardware en sistemas de bases de datos relacionales [en línea]. Tesis de grado. Montevideo : Udelar. FI. INCO, 2019. |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | spa |
language_invalid_str_mv | es |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/23014 |
publishDate | 2019 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | Barreiro Alejandro, Universidad de la República (Uruguay). Facultad de IngenieríaCabrera Anthony, Universidad de la República (Uruguay). Facultad de Ingeniería2020-02-03T18:34:43Z2020-02-03T18:34:43Z2019Barreiro, A. y Cabrera, A. Uso de aceleradores de hardware en sistemas de bases de datos relacionales [en línea]. Tesis de grado. Montevideo : Udelar. FI. INCO, 2019.https://hdl.handle.net/20.500.12008/23014En los últimos años el uso de coprocesadores gráficos, o GPUs por su sigla en inglés, para acelerar la resolución de problemas de propósito general ha ido en aumento. Estos dispositivos han fomentado la evolución del uso de arquitecturas de cómputo homogéneas y con un solo procesador a plataformas de hardware heterogéneas y masivamente paralelas. Los motores de bases de datos no son ajenos a esta tendencia. Notar que los sistemas manejadores de bases de datos (DBMS) requieren de grandes volúmenes de cómputo. Los manejadores que aprovechan las GPUs, conocidos como GDBMS, en general sacan partido de las bondades de estos dispositivos en contextos de consultas que implican grandes volúmenes de datos. En este trabajo se relevan GDBMS existentes, analizando oportunidades de mejora, priorizando aquellos GDBMS que sean capaces de incorporar técnicas de aprendizaje automático para determinar qué dispositivo utilizar en cada contexto. En particular, en este proyecto se propone trabajar sobre un manejador existente (CoGaDB), y más específicamente en una versión que fue extendida en un proyecto de grado anterior, con el fin de mejorar el aprovechamiento de los recursos ociosos (y, por tanto, reducir los tiempos de ejecución de consultas con altos requerimientos de cómputo). El principal foco del trabajo es el desarrollo de una heurística para automatizar la distribución del trabajo (y datos) entre los diferentes dispositivos de cómputo disponibles en la plataforma de ejecución para consultas del tipo Join. La herramienta desarrollada se basa en el uso de técnicas de aprendizaje automático. La evaluación experimental muestra que, para consultas que involucran columnas con gran cantidad de valores, la utilización del Join híbrido concurrente y el uso de la heurística formulada es fundamental para la obtención de mejores tiempos de ejecución, así como para alcanzar un mejor aprovechamiento de los recursos disponibles.Submitted by Cabrera Gabriela (gfcabrerarossi@gmail.com) on 2020-02-03T15:00:46Z No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) BC19.pdf: 1103740 bytes, checksum: 3e13130d498c2ca61817431ef598f9dd (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2020-02-03T18:32:59Z (GMT) No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) BC19.pdf: 1103740 bytes, checksum: 3e13130d498c2ca61817431ef598f9dd (MD5)Made available in DSpace by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2020-02-03T18:34:43Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) BC19.pdf: 1103740 bytes, checksum: 3e13130d498c2ca61817431ef598f9dd (MD5) Previous issue date: 2019114 p.application/pdfesspaUdelar.FILas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)SISTEMAS DE BASES DE DATOSUso de aceleradores de hardware en sistemas de bases de datos relacionalesTesis de gradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaBarreiro, AlejandroCabrera, AnthonyEtcheverry, LorenaEzzatti, PabloUniversidad de la República (Uruguay). Facultad de IngenieríaIngeniero en ComputaciónLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/23014/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/23014/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838418http://localhost:8080/xmlui/bitstream/20.500.12008/23014/3/license_textb7a1f0ecb0a08331e6e1cffe9455730aMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://localhost:8080/xmlui/bitstream/20.500.12008/23014/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALBC19.pdfBC19.pdfapplication/pdf1103740http://localhost:8080/xmlui/bitstream/20.500.12008/23014/1/BC19.pdf3e13130d498c2ca61817431ef598f9ddMD5120.500.12008/230142024-04-12 14:06:40.55oai:colibri.udelar.edu.uy:20.500.12008/23014VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:46:18.712160COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Uso de aceleradores de hardware en sistemas de bases de datos relacionales Barreiro, Alejandro SISTEMAS DE BASES DE DATOS |
status_str | acceptedVersion |
title | Uso de aceleradores de hardware en sistemas de bases de datos relacionales |
title_full | Uso de aceleradores de hardware en sistemas de bases de datos relacionales |
title_fullStr | Uso de aceleradores de hardware en sistemas de bases de datos relacionales |
title_full_unstemmed | Uso de aceleradores de hardware en sistemas de bases de datos relacionales |
title_short | Uso de aceleradores de hardware en sistemas de bases de datos relacionales |
title_sort | Uso de aceleradores de hardware en sistemas de bases de datos relacionales |
topic | SISTEMAS DE BASES DE DATOS |
url | https://hdl.handle.net/20.500.12008/23014 |