Wireless EEG system achieving high throughput and reduced energy consumption through lossless and near-lossless compression.

Dufort y Álvarez, Guillermo - Favaro, Federico - Lecumberry, Federico - Martín Menoni, Alvaro - Oliver, Juan Pablo - Oreggioni, Julián - Ramírez Paulino, Ignacio - Seroussi, Gadiel - Steinfeld, Leonardo

Resumen:

This work presents a wireless multichannel electroencephalogram (EEG) recording system featuring lossless and near-lossless compression of the digitized EEG signal. Two novel, low-complexity, efficient compression algorithms were developed and tested in a low-power platform. The algorithms were tested on six public EEG databases comparing favorably with the best compression rates reported up to date in the literature. In its lossless mode, the platform is capable of encoding and transmitting 59-channel EEG signals, sampled at 500 Hz and 16 bits per sample, at a current consumption of 337 μA per channel; this comes with a guarantee that the decompressed signal is identical to the sampled one. The near-lossless mode allows for significant energy savings and/or higher throughputs in exchange for a small guaranteed maximum per-sample distortion in the recovered signal. Finally, we address the tradeoff between computation cost and transmission savings by evaluating three alternatives: sending raw data, or encoding with one of two compression algorithms that differ in complexity and compression performance. We observe that the higher the throughput (number of channels and sampling rate) the larger the benefits obtained from compression.


Detalles Bibliográficos
2018
Electroencephalography
Wireless communication
Compression algorithms
Throughput
Power demand
Microcontrollers
Transforms
EEG
Embedded systems
Lossless data compression
Low power consumption
Near-lossless data compression
Wearable devices
Wireless EEG
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/28934
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807522991860350976
author Dufort y Álvarez, Guillermo
author2 Favaro, Federico
Lecumberry, Federico
Martín Menoni, Alvaro
Oliver, Juan Pablo
Oreggioni, Julián
Ramírez Paulino, Ignacio
Seroussi, Gadiel
Steinfeld, Leonardo
author2_role author
author
author
author
author
author
author
author
author_facet Dufort y Álvarez, Guillermo
Favaro, Federico
Lecumberry, Federico
Martín Menoni, Alvaro
Oliver, Juan Pablo
Oreggioni, Julián
Ramírez Paulino, Ignacio
Seroussi, Gadiel
Steinfeld, Leonardo
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
36c32e9c6da50e6d55578c16944ef7f6
1996b8461bc290aef6a27d78c67b6b52
f70bd60095fa1b6aa7983810f7790371
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/28934/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/28934/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/28934/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/28934/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/28934/1/DFLMOORSS18.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Dufort y Álvarez Guillermo, Universidad de la República (Uruguay). Facultad de Ingeniería.
Favaro Federico, Universidad de la República (Uruguay). Facultad de Ingeniería.
Lecumberry Federico, Universidad de la República (Uruguay). Facultad de Ingeniería.
Martín Menoni Alvaro, Universidad de la República (Uruguay). Facultad de Ingeniería.
Oliver Juan Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería.
Oreggioni Julián, Universidad de la República (Uruguay). Facultad de Ingeniería.
Ramírez Paulino Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería.
Seroussi Gadiel, Universidad de la República (Uruguay). Facultad de Ingeniería.
Steinfeld Leonardo, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creator.none.fl_str_mv Dufort y Álvarez, Guillermo
Favaro, Federico
Lecumberry, Federico
Martín Menoni, Alvaro
Oliver, Juan Pablo
Oreggioni, Julián
Ramírez Paulino, Ignacio
Seroussi, Gadiel
Steinfeld, Leonardo
dc.date.accessioned.none.fl_str_mv 2021-08-06T12:09:38Z
dc.date.available.none.fl_str_mv 2021-08-06T12:09:38Z
dc.date.issued.none.fl_str_mv 2018
dc.description.abstract.none.fl_txt_mv This work presents a wireless multichannel electroencephalogram (EEG) recording system featuring lossless and near-lossless compression of the digitized EEG signal. Two novel, low-complexity, efficient compression algorithms were developed and tested in a low-power platform. The algorithms were tested on six public EEG databases comparing favorably with the best compression rates reported up to date in the literature. In its lossless mode, the platform is capable of encoding and transmitting 59-channel EEG signals, sampled at 500 Hz and 16 bits per sample, at a current consumption of 337 μA per channel; this comes with a guarantee that the decompressed signal is identical to the sampled one. The near-lossless mode allows for significant energy savings and/or higher throughputs in exchange for a small guaranteed maximum per-sample distortion in the recovered signal. Finally, we address the tradeoff between computation cost and transmission savings by evaluating three alternatives: sending raw data, or encoding with one of two compression algorithms that differ in complexity and compression performance. We observe that the higher the throughput (number of channels and sampling rate) the larger the benefits obtained from compression.
dc.description.es.fl_txt_mv Este trabajo fue parcialmente financiado por CSIC (Comisión Sectorial de Investigación Científica, Uruguay), ANII (Agencia Nacional de Investigación e Innovación, Uruguay) y CAP (Comisión Académica de Posgrado, Uruguay).
dc.format.extent.es.fl_str_mv 11 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Dufort y Álvarez, G., Favaro, F., Lecumberry, F. y otros. Wireless EEG system achieving high throughput and reduced energy consumption through lossless and near-lossless compression [Preprint]. Publicado en : IEEE Transactions on Biomedical Circuits and Systems, vol. 12, no 1, Feb. 2018, pp. 231-241, DOI: 10.1109/TBCAS.2017.2779324
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/28934
dc.language.iso.none.fl_str_mv en
eng
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.en.fl_str_mv Electroencephalography
Wireless communication
Compression algorithms
Throughput
Power demand
Microcontrollers
Transforms
EEG
Embedded systems
Lossless data compression
Low power consumption
Near-lossless data compression
Wearable devices
Wireless EEG
dc.title.none.fl_str_mv Wireless EEG system achieving high throughput and reduced energy consumption through lossless and near-lossless compression.
dc.type.es.fl_str_mv Preprint
dc.type.none.fl_str_mv info:eu-repo/semantics/preprint
dc.type.version.none.fl_str_mv info:eu-repo/semantics/submittedVersion
description Este trabajo fue parcialmente financiado por CSIC (Comisión Sectorial de Investigación Científica, Uruguay), ANII (Agencia Nacional de Investigación e Innovación, Uruguay) y CAP (Comisión Académica de Posgrado, Uruguay).
eu_rights_str_mv openAccess
format preprint
id COLIBRI_eaf8713b5d6072d2d321dfb3928948d5
identifier_str_mv Dufort y Álvarez, G., Favaro, F., Lecumberry, F. y otros. Wireless EEG system achieving high throughput and reduced energy consumption through lossless and near-lossless compression [Preprint]. Publicado en : IEEE Transactions on Biomedical Circuits and Systems, vol. 12, no 1, Feb. 2018, pp. 231-241, DOI: 10.1109/TBCAS.2017.2779324
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/28934
publishDate 2018
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Dufort y Álvarez Guillermo, Universidad de la República (Uruguay). Facultad de Ingeniería.Favaro Federico, Universidad de la República (Uruguay). Facultad de Ingeniería.Lecumberry Federico, Universidad de la República (Uruguay). Facultad de Ingeniería.Martín Menoni Alvaro, Universidad de la República (Uruguay). Facultad de Ingeniería.Oliver Juan Pablo, Universidad de la República (Uruguay). Facultad de Ingeniería.Oreggioni Julián, Universidad de la República (Uruguay). Facultad de Ingeniería.Ramírez Paulino Ignacio, Universidad de la República (Uruguay). Facultad de Ingeniería.Seroussi Gadiel, Universidad de la República (Uruguay). Facultad de Ingeniería.Steinfeld Leonardo, Universidad de la República (Uruguay). Facultad de Ingeniería.2021-08-06T12:09:38Z2021-08-06T12:09:38Z2018Dufort y Álvarez, G., Favaro, F., Lecumberry, F. y otros. Wireless EEG system achieving high throughput and reduced energy consumption through lossless and near-lossless compression [Preprint]. Publicado en : IEEE Transactions on Biomedical Circuits and Systems, vol. 12, no 1, Feb. 2018, pp. 231-241, DOI: 10.1109/TBCAS.2017.2779324https://hdl.handle.net/20.500.12008/28934Este trabajo fue parcialmente financiado por CSIC (Comisión Sectorial de Investigación Científica, Uruguay), ANII (Agencia Nacional de Investigación e Innovación, Uruguay) y CAP (Comisión Académica de Posgrado, Uruguay).This work presents a wireless multichannel electroencephalogram (EEG) recording system featuring lossless and near-lossless compression of the digitized EEG signal. Two novel, low-complexity, efficient compression algorithms were developed and tested in a low-power platform. The algorithms were tested on six public EEG databases comparing favorably with the best compression rates reported up to date in the literature. In its lossless mode, the platform is capable of encoding and transmitting 59-channel EEG signals, sampled at 500 Hz and 16 bits per sample, at a current consumption of 337 μA per channel; this comes with a guarantee that the decompressed signal is identical to the sampled one. The near-lossless mode allows for significant energy savings and/or higher throughputs in exchange for a small guaranteed maximum per-sample distortion in the recovered signal. Finally, we address the tradeoff between computation cost and transmission savings by evaluating three alternatives: sending raw data, or encoding with one of two compression algorithms that differ in complexity and compression performance. We observe that the higher the throughput (number of channels and sampling rate) the larger the benefits obtained from compression.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2021-08-03T22:07:38Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) DFLMOORSS18.pdf: 2041159 bytes, checksum: f70bd60095fa1b6aa7983810f7790371 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2021-08-05T20:44:39Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) DFLMOORSS18.pdf: 2041159 bytes, checksum: f70bd60095fa1b6aa7983810f7790371 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2021-08-06T12:09:38Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) DFLMOORSS18.pdf: 2041159 bytes, checksum: f70bd60095fa1b6aa7983810f7790371 (MD5) Previous issue date: 201811 p.application/pdfenengLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)ElectroencephalographyWireless communicationCompression algorithmsThroughputPower demandMicrocontrollersTransformsEEGEmbedded systemsLossless data compressionLow power consumptionNear-lossless data compressionWearable devicesWireless EEGWireless EEG system achieving high throughput and reduced energy consumption through lossless and near-lossless compression.Preprintinfo:eu-repo/semantics/preprintinfo:eu-repo/semantics/submittedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaDufort y Álvarez, GuillermoFavaro, FedericoLecumberry, FedericoMartín Menoni, AlvaroOliver, Juan PabloOreggioni, JuliánRamírez Paulino, IgnacioSeroussi, GadielSteinfeld, LeonardoProcesamiento de SeñalesMicroelectrónicaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/28934/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/28934/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838616http://localhost:8080/xmlui/bitstream/20.500.12008/28934/3/license_text36c32e9c6da50e6d55578c16944ef7f6MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/28934/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALDFLMOORSS18.pdfDFLMOORSS18.pdfapplication/pdf2041159http://localhost:8080/xmlui/bitstream/20.500.12008/28934/1/DFLMOORSS18.pdff70bd60095fa1b6aa7983810f7790371MD5120.500.12008/289342024-08-01 18:18:47.549oai:colibri.udelar.edu.uy:20.500.12008/28934VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-08-13T03:00:55.396971COLIBRI - Universidad de la Repúblicafalse
spellingShingle Wireless EEG system achieving high throughput and reduced energy consumption through lossless and near-lossless compression.
Dufort y Álvarez, Guillermo
Electroencephalography
Wireless communication
Compression algorithms
Throughput
Power demand
Microcontrollers
Transforms
EEG
Embedded systems
Lossless data compression
Low power consumption
Near-lossless data compression
Wearable devices
Wireless EEG
status_str submittedVersion
title Wireless EEG system achieving high throughput and reduced energy consumption through lossless and near-lossless compression.
title_full Wireless EEG system achieving high throughput and reduced energy consumption through lossless and near-lossless compression.
title_fullStr Wireless EEG system achieving high throughput and reduced energy consumption through lossless and near-lossless compression.
title_full_unstemmed Wireless EEG system achieving high throughput and reduced energy consumption through lossless and near-lossless compression.
title_short Wireless EEG system achieving high throughput and reduced energy consumption through lossless and near-lossless compression.
title_sort Wireless EEG system achieving high throughput and reduced energy consumption through lossless and near-lossless compression.
topic Electroencephalography
Wireless communication
Compression algorithms
Throughput
Power demand
Microcontrollers
Transforms
EEG
Embedded systems
Lossless data compression
Low power consumption
Near-lossless data compression
Wearable devices
Wireless EEG
url https://hdl.handle.net/20.500.12008/28934