Generation of english question answer exercises from texts using transformers based models

Berger, Gonzalo - Rischewski, Tatiana - Chiruzzo, Luis - Rosá, Aiala

Resumen:

This paper studies the use of NLP techniques, in particular, neural language models, for the generation of question/answer exercises from English texts. The experiments aim to generate beginner-level exercises from simple texts, to be used in teaching ESL (English as a Second Language) to children. The approach we present in this paper is based on four stages: a pre-processing stage that, among other basic tasks, applies a co-reference resolution tool; an answer candidate selection stage, which is based on semantic role labeling; a question generation stage, which takes as input the text with the resolved co-references and returns a set of questions for each answer candidate using a language model based on the Transformers architecture; and a post-processing stage that adjusts the format of the generated questions. The question generation model was evaluated on a benchmark obtaining similar results to those of previous works, and the complete pipeline was evaluated on a corpus specifically created for this task, achieving good results.


Detalles Bibliográficos
2022
Agencia Nacional de Investigación e Innovación. Proyecto FSED_2_2020_1_163587.
NLP for language teaching
Question & answering
Transformers
Neural language models
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/37155
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807522945855127552
author Berger, Gonzalo
author2 Rischewski, Tatiana
Chiruzzo, Luis
Rosá, Aiala
author2_role author
author
author
author_facet Berger, Gonzalo
Rischewski, Tatiana
Chiruzzo, Luis
Rosá, Aiala
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
e8c30e04e865334cac2bfcba70aad8cb
1996b8461bc290aef6a27d78c67b6b52
06511a50453e6b1b2256cda20648dd1d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/37155/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/37155/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/37155/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/37155/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/37155/1/BRCR22.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Berger Gonzalo, Universidad de la República (Uruguay). Facultad de Ingeniería.
Rischewski Tatiana, Universidad de la República (Uruguay). Facultad de Ingeniería
Chiruzzo Luis, Universidad de la República (Uruguay). Facultad de Ingeniería.
Rosá Aiala, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creator.none.fl_str_mv Berger, Gonzalo
Rischewski, Tatiana
Chiruzzo, Luis
Rosá, Aiala
dc.date.accessioned.none.fl_str_mv 2023-05-16T16:27:08Z
dc.date.available.none.fl_str_mv 2023-05-16T16:27:08Z
dc.date.issued.none.fl_str_mv 2022
dc.description.abstract.none.fl_txt_mv This paper studies the use of NLP techniques, in particular, neural language models, for the generation of question/answer exercises from English texts. The experiments aim to generate beginner-level exercises from simple texts, to be used in teaching ESL (English as a Second Language) to children. The approach we present in this paper is based on four stages: a pre-processing stage that, among other basic tasks, applies a co-reference resolution tool; an answer candidate selection stage, which is based on semantic role labeling; a question generation stage, which takes as input the text with the resolved co-references and returns a set of questions for each answer candidate using a language model based on the Transformers architecture; and a post-processing stage that adjusts the format of the generated questions. The question generation model was evaluated on a benchmark obtaining similar results to those of previous works, and the complete pipeline was evaluated on a corpus specifically created for this task, achieving good results.
dc.description.es.fl_txt_mv 2022 IEEE Latin American Conference on Computational Intelligence (LA-CCI), 23-25 November 2022, Montevideo, Uruguay.
dc.description.sponsorship.none.fl_txt_mv Agencia Nacional de Investigación e Innovación. Proyecto FSED_2_2020_1_163587.
dc.format.extent.es.fl_str_mv 5 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Berger, G., Rischewski, T., Chiruzzo, L. y otros. Generation of english question answer exercises from texts using transformers based models [en línea] EN : 2022 IEEE Latin American Conference on Computational Intelligence (LA-CCI), 23-25 November 2022, Montevideo, Uruguay. 5 p. DOI: 10.1109/LA-CCI54402.2022.9981171
dc.identifier.doi.none.fl_str_mv 10.1109/LA-CCI54402.2022.9981171
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/37155
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv IEEE
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv NLP for language teaching
Question & answering
Transformers
Neural language models
dc.title.none.fl_str_mv Generation of english question answer exercises from texts using transformers based models
dc.type.es.fl_str_mv Ponencia
dc.type.none.fl_str_mv info:eu-repo/semantics/conferenceObject
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description 2022 IEEE Latin American Conference on Computational Intelligence (LA-CCI), 23-25 November 2022, Montevideo, Uruguay.
eu_rights_str_mv openAccess
format conferenceObject
id COLIBRI_e9fd37fc3f5c5a971a1a77b37a2c1f58
identifier_str_mv Berger, G., Rischewski, T., Chiruzzo, L. y otros. Generation of english question answer exercises from texts using transformers based models [en línea] EN : 2022 IEEE Latin American Conference on Computational Intelligence (LA-CCI), 23-25 November 2022, Montevideo, Uruguay. 5 p. DOI: 10.1109/LA-CCI54402.2022.9981171
10.1109/LA-CCI54402.2022.9981171
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/37155
publishDate 2022
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Berger Gonzalo, Universidad de la República (Uruguay). Facultad de Ingeniería.Rischewski Tatiana, Universidad de la República (Uruguay). Facultad de IngenieríaChiruzzo Luis, Universidad de la República (Uruguay). Facultad de Ingeniería.Rosá Aiala, Universidad de la República (Uruguay). Facultad de Ingeniería.2023-05-16T16:27:08Z2023-05-16T16:27:08Z2022Berger, G., Rischewski, T., Chiruzzo, L. y otros. Generation of english question answer exercises from texts using transformers based models [en línea] EN : 2022 IEEE Latin American Conference on Computational Intelligence (LA-CCI), 23-25 November 2022, Montevideo, Uruguay. 5 p. DOI: 10.1109/LA-CCI54402.2022.9981171https://hdl.handle.net/20.500.12008/3715510.1109/LA-CCI54402.2022.99811712022 IEEE Latin American Conference on Computational Intelligence (LA-CCI), 23-25 November 2022, Montevideo, Uruguay.This paper studies the use of NLP techniques, in particular, neural language models, for the generation of question/answer exercises from English texts. The experiments aim to generate beginner-level exercises from simple texts, to be used in teaching ESL (English as a Second Language) to children. The approach we present in this paper is based on four stages: a pre-processing stage that, among other basic tasks, applies a co-reference resolution tool; an answer candidate selection stage, which is based on semantic role labeling; a question generation stage, which takes as input the text with the resolved co-references and returns a set of questions for each answer candidate using a language model based on the Transformers architecture; and a post-processing stage that adjusts the format of the generated questions. The question generation model was evaluated on a benchmark obtaining similar results to those of previous works, and the complete pipeline was evaluated on a corpus specifically created for this task, achieving good results.Submitted by Machado Jimena (jmachado@fing.edu.uy) on 2023-05-15T20:45:15Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) BRCR22.pdf: 182736 bytes, checksum: 06511a50453e6b1b2256cda20648dd1d (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2023-05-16T16:25:12Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) BRCR22.pdf: 182736 bytes, checksum: 06511a50453e6b1b2256cda20648dd1d (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2023-05-16T16:27:08Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) BRCR22.pdf: 182736 bytes, checksum: 06511a50453e6b1b2256cda20648dd1d (MD5) Previous issue date: 2022Agencia Nacional de Investigación e Innovación. Proyecto FSED_2_2020_1_163587.5 p.application/pdfenengIEEELas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)NLP for language teachingQuestion & answeringTransformersNeural language modelsGeneration of english question answer exercises from texts using transformers based modelsPonenciainfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaBerger, GonzaloRischewski, TatianaChiruzzo, LuisRosá, AialaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/37155/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/37155/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838782http://localhost:8080/xmlui/bitstream/20.500.12008/37155/3/license_texte8c30e04e865334cac2bfcba70aad8cbMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/37155/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALBRCR22.pdfBRCR22.pdfapplication/pdf182736http://localhost:8080/xmlui/bitstream/20.500.12008/37155/1/BRCR22.pdf06511a50453e6b1b2256cda20648dd1dMD5120.500.12008/371552023-05-16 13:27:08.305oai:colibri.udelar.edu.uy:20.500.12008/37155VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:34:03.695042COLIBRI - Universidad de la Repúblicafalse
spellingShingle Generation of english question answer exercises from texts using transformers based models
Berger, Gonzalo
NLP for language teaching
Question & answering
Transformers
Neural language models
status_str publishedVersion
title Generation of english question answer exercises from texts using transformers based models
title_full Generation of english question answer exercises from texts using transformers based models
title_fullStr Generation of english question answer exercises from texts using transformers based models
title_full_unstemmed Generation of english question answer exercises from texts using transformers based models
title_short Generation of english question answer exercises from texts using transformers based models
title_sort Generation of english question answer exercises from texts using transformers based models
topic NLP for language teaching
Question & answering
Transformers
Neural language models
url https://hdl.handle.net/20.500.12008/37155