Domination Invariant of a Diameter Constrained Network Reliability Model

Cancela, Héctor - Petingi, Louis

Resumen:

Let G=(V,E) be a digraph with a distinguished set of terminal vertices K in V and a vertex s in K. We define the s,K-diameter of G as the maximum distance between s and any of vertices of K. If the arcs fail randomly and independently with known probabilities (vertices are always operational), the Diameter-constrained s,K-terminal reliability of G, R_\{s,K\}(G,D) is defined as the probability that surviving arcs span a subgraph whose s,K-diameter does not exceed D. The Diameter-constrained network reliability is a special case of coherent system models, where the domination invariant has played an important role, both theoretically and for developing algorithms for reliability computation. In this work, we completely characterize the domination of diameter-constrained network models, giving a simple rule for computing its value: if the digraph either has an irrelevant edge, includes a dicycle or includes a dipath from $s$ to a node in K longer than D, its domination is 0; otherwise, its domination is -1 to the power |E|-|V|+1.


Detalles Bibliográficos
2004
Graph theory
Domination
Diameter-constrained network reliability
Universidad de la República
COLIBRI
http://hdl.handle.net/20.500.12008/3504
Acceso abierto
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
_version_ 1807522943958253568
author Cancela, Héctor
author2 Petingi, Louis
author2_role author
author_facet Cancela, Héctor
Petingi, Louis
author_role author
bitstream.checksum.fl_str_mv 528b6a3c8c7d0c6e28129d576e989607
9833653f73f7853880c94a6fead477b1
4afdbb8c545fd630ea7db775da747b2f
9da0b6dfac957114c6a7714714b86306
f600b85089c8c7c8df65f4c6720e0840
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/3504/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/3504/2/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/3504/3/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/3504/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/3504/1/TR0404.pdf
collection COLIBRI
dc.creator.none.fl_str_mv Cancela, Héctor
Petingi, Louis
dc.date.accessioned.none.fl_str_mv 2014-12-02T16:07:07Z
dc.date.available.none.fl_str_mv 2014-12-02T16:07:07Z
dc.date.issued.es.fl_str_mv 2004
dc.date.submitted.es.fl_str_mv 20141202
dc.description.abstract.none.fl_txt_mv Let G=(V,E) be a digraph with a distinguished set of terminal vertices K in V and a vertex s in K. We define the s,K-diameter of G as the maximum distance between s and any of vertices of K. If the arcs fail randomly and independently with known probabilities (vertices are always operational), the Diameter-constrained s,K-terminal reliability of G, R_\{s,K\}(G,D) is defined as the probability that surviving arcs span a subgraph whose s,K-diameter does not exceed D. The Diameter-constrained network reliability is a special case of coherent system models, where the domination invariant has played an important role, both theoretically and for developing algorithms for reliability computation. In this work, we completely characterize the domination of diameter-constrained network models, giving a simple rule for computing its value: if the digraph either has an irrelevant edge, includes a dicycle or includes a dipath from $s$ to a node in K longer than D, its domination is 0; otherwise, its domination is -1 to the power |E|-|V|+1.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv CANCELA BOSI, H., PETINGI, L. "Domination Invariant of a Diameter Constrained Network Reliability Model". Reportes Técnicos 04-04. UR. FI – INCO, 2004.
dc.identifier.issn.es.fl_str_mv 0797-6410
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12008/3504
dc.language.iso.none.fl_str_mv in
dc.publisher.es.fl_str_mv UR. FI – INCO.
dc.relation.ispartof.es.fl_str_mv Reportes Técnicos 04-04
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Graph theory
Domination
Diameter-constrained network reliability
dc.title.none.fl_str_mv Domination Invariant of a Diameter Constrained Network Reliability Model
dc.type.es.fl_str_mv Reporte técnico
dc.type.none.fl_str_mv info:eu-repo/semantics/report
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description Let G=(V,E) be a digraph with a distinguished set of terminal vertices K in V and a vertex s in K. We define the s,K-diameter of G as the maximum distance between s and any of vertices of K. If the arcs fail randomly and independently with known probabilities (vertices are always operational), the Diameter-constrained s,K-terminal reliability of G, R_\{s,K\}(G,D) is defined as the probability that surviving arcs span a subgraph whose s,K-diameter does not exceed D. The Diameter-constrained network reliability is a special case of coherent system models, where the domination invariant has played an important role, both theoretically and for developing algorithms for reliability computation. In this work, we completely characterize the domination of diameter-constrained network models, giving a simple rule for computing its value: if the digraph either has an irrelevant edge, includes a dicycle or includes a dipath from $s$ to a node in K longer than D, its domination is 0; otherwise, its domination is -1 to the power |E|-|V|+1.
eu_rights_str_mv openAccess
format report
id COLIBRI_e775b2395f0a3b19421ed9c27eb9ca51
identifier_str_mv CANCELA BOSI, H., PETINGI, L. "Domination Invariant of a Diameter Constrained Network Reliability Model". Reportes Técnicos 04-04. UR. FI – INCO, 2004.
0797-6410
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language_invalid_str_mv in
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/3504
publishDate 2004
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)
spelling 2014-12-02T16:07:07Z2014-12-02T16:07:07Z200420141202CANCELA BOSI, H., PETINGI, L. "Domination Invariant of a Diameter Constrained Network Reliability Model". Reportes Técnicos 04-04. UR. FI – INCO, 2004.0797-6410http://hdl.handle.net/20.500.12008/3504Let G=(V,E) be a digraph with a distinguished set of terminal vertices K in V and a vertex s in K. We define the s,K-diameter of G as the maximum distance between s and any of vertices of K. If the arcs fail randomly and independently with known probabilities (vertices are always operational), the Diameter-constrained s,K-terminal reliability of G, R_\{s,K\}(G,D) is defined as the probability that surviving arcs span a subgraph whose s,K-diameter does not exceed D. The Diameter-constrained network reliability is a special case of coherent system models, where the domination invariant has played an important role, both theoretically and for developing algorithms for reliability computation. In this work, we completely characterize the domination of diameter-constrained network models, giving a simple rule for computing its value: if the digraph either has an irrelevant edge, includes a dicycle or includes a dipath from $s$ to a node in K longer than D, its domination is 0; otherwise, its domination is -1 to the power |E|-|V|+1.Made available in DSpace on 2014-12-02T16:07:07Z (GMT). No. of bitstreams: 5 TR0404.pdf: 157385 bytes, checksum: f600b85089c8c7c8df65f4c6720e0840 (MD5) license_text: 21936 bytes, checksum: 9833653f73f7853880c94a6fead477b1 (MD5) license_url: 49 bytes, checksum: 4afdbb8c545fd630ea7db775da747b2f (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) license.txt: 4244 bytes, checksum: 528b6a3c8c7d0c6e28129d576e989607 (MD5) Previous issue date: 2004application/pdfinUR. FI – INCO.Reportes Técnicos 04-04Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC BY-NC-ND 4.0)Graph theoryDominationDiameter-constrained network reliabilityDomination Invariant of a Diameter Constrained Network Reliability ModelReporte técnicoinfo:eu-repo/semantics/reportinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaCancela, HéctorPetingi, LouisLICENSElicense.txttext/plain4244http://localhost:8080/xmlui/bitstream/20.500.12008/3504/5/license.txt528b6a3c8c7d0c6e28129d576e989607MD55CC-LICENSElicense_textapplication/octet-stream21936http://localhost:8080/xmlui/bitstream/20.500.12008/3504/2/license_text9833653f73f7853880c94a6fead477b1MD52license_urlapplication/octet-stream49http://localhost:8080/xmlui/bitstream/20.500.12008/3504/3/license_url4afdbb8c545fd630ea7db775da747b2fMD53license_rdfapplication/octet-stream23148http://localhost:8080/xmlui/bitstream/20.500.12008/3504/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALTR0404.pdfapplication/pdf157385http://localhost:8080/xmlui/bitstream/20.500.12008/3504/1/TR0404.pdff600b85089c8c7c8df65f4c6720e0840MD5120.500.12008/35042016-05-04 13:37:37.87oai:colibri.udelar.edu.uy:20.500.12008/3504VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMNCg0KDQpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDvv71ibGljYS4gKFJlcy4gTu+/vSA5MSBkZSBDLkQuQy4gZGUgOC9JSUkvMTk5NCDvv70gRC5PLiA3L0lWLzE5OTQpIHkgIHBvciBsYSBPcmRlbmFuemEgZGVsIFJlcG9zaXRvcmlvIEFiaWVydG8gZGUgbGEgVW5pdmVyc2lkYWQgZGUgbGEgUmVw77+9YmxpY2EgKFJlcy4gTu+/vSAxNiBkZSBDLkQuQy4gZGUgMDcvMTAvMjAxNCkuIA0KDQpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdO+/vXJtaW5vcyB5IGNvbmRpY2lvbmVzIGRlIGRlcO+/vXNpdG8gZW4gQ09MSUJSSSwgbGEgVW5pdmVyc2lkYWQgZGUgUmVw77+9YmxpY2EgcHJvY2VkZXLvv70gYTogIA0KDQphKSBhcmNoaXZhciBt77+9cyBkZSB1bmEgY29waWEgZGUgbGEgb2JyYSBlbiBsb3Mgc2Vydmlkb3JlcyBkZSBsYSBVbml2ZXJzaWRhZCBhIGxvcyBlZmVjdG9zIGRlIGdhcmFudGl6YXIgYWNjZXNvLCBzZWd1cmlkYWQgeSBwcmVzZXJ2YWNp77+9bg0KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nvv71uIHkgYWNjZXNpYmlsaWRhZCBzaW4gYWx0ZXJhciBzdSBjb250ZW5pZG8uDQpjKSByZWFsaXphciBsYSBjb211bmljYWNp77+9biBw77+9YmxpY2EgeSBkaXNwb25lciBlbCBhY2Nlc28gbGlicmUgeSBncmF0dWl0byBhIHRyYXbvv71zIGRlIEludGVybmV0IG1lZGlhbnRlIGxhIHB1YmxpY2Fjae+/vW4gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuDQoNCg0KRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcu+/vSBzb2xpY2l0YXIgdW4gcGVy77+9b2RvIGRlIGVtYmFyZ28gc29icmUgbGEgZGlzcG9uaWJpbGlkYWQgcO+/vWJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFy77+9IGEgcGFydGlyIGRlIGxhIGFjZXB0YWNp77+9biBkZSBlc3RlIGRvY3VtZW50byB5IGhhc3RhIGxhIGZlY2hhIHF1ZSBpbmRpcXVlIC4NCg0KRWwgYXV0b3IgYXNlZ3VyYSBxdWUgbGEgb2JyYSBubyBpbmZyaWdlIG5pbmfvv71uIGRlcmVjaG8gc29icmUgdGVyY2Vyb3MsIHlhIHNlYSBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgbyBjdWFscXVpZXIgb3Ryby4NCg0KRWwgYXV0b3IgZ2FyYW50aXphIHF1ZSBzaSBlbCBkb2N1bWVudG8gY29udGllbmUgbWF0ZXJpYWxlcyBkZSBsb3MgY3VhbGVzIG5vIHRpZW5lIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgIGhhIG9idGVuaWRvIGVsIHBlcm1pc28gZGVsIHByb3BpZXRhcmlvIGRlIGxvcyBkZXJlY2hvcyBkZSBhdXRvciwgeSBxdWUgZXNlIG1hdGVyaWFsIGN1eW9zIGRlcmVjaG9zIHNvbiBkZSB0ZXJjZXJvcyBlc3Tvv70gY2xhcmFtZW50ZSBpZGVudGlmaWNhZG8geSByZWNvbm9jaWRvIGVuIGVsIHRleHRvIG8gY29udGVuaWRvIGRlbCBkb2N1bWVudG8gZGVwb3NpdGFkbyBlbiBlbCBSZXBvc2l0b3Jpby4NCg0KRW4gb2JyYXMgZGUgYXV0b3Lvv71hIG3vv71sdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDvv71zdGUgZWwg77+9bmljbyByZXNwb25zYWJsZSBmcmVudGUgYSBjdWFscXVpZXIgdGlwbyBkZSByZWNsYW1hY2nvv71uIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuDQoNCkVsIGF1dG9yIHNlcu+/vSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcu+/vSByZXNwb25zYWJsZSBwb3IgbGFzIGV2ZW50dWFsZXMgdmlvbGFjaW9uZXMgYWwgZGVyZWNobyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwgZW4gcXVlIHB1ZWRhIGluY3VycmlyIGVsIGF1dG9yLg0KDQpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNp77+9biBkZSBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGxhIFVERUxBUiAgYWRvcHRhcu+/vSB0b2RhcyBsYXMgbWVkaWRhcyBuZWNlc2FyaWFzIHBhcmEgZXZpdGFyIGxhIGNvbnRpbnVhY2nvv71uIGRlIGRpY2hhIGluZnJhY2Np77+9biwgbGFzIHF1ZSBwb2Ry77+9biBpbmNsdWlyIGVsIHJldGlybyBkZWwgYWNjZXNvIGEgbG9zIGNvbnRlbmlkb3MgeS9vIG1ldGFkYXRvcyBkZWwgZG9jdW1lbnRvIHJlc3BlY3Rpdm8uDQoNCkxhIG9icmEgc2UgcG9uZHLvv70gYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28gYSB0cmF277+9cyBkZSBsYXMgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMsIGVsIGF1dG9yIHBvZHLvv70gc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoNCg0KDQpBdHJpYnVjae+/vW4gKENDIC0gQnkpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgc2llbXByZSBxdWUgc2UgcmVjb25vemNhIGFsIGF1dG9yLg0KDQpBdHJpYnVjae+/vW4g77+9IENvbXBhcnRpciBJZ3VhbCAoQ0MgLSBCeS1TQSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIGxhIGRpc3RyaWJ1Y2nvv71uIGRlIGxhcyBvYnJhcyBkZXJpdmFkYXMgZGViZSBoYWNlcnNlIG1lZGlhbnRlIHVuYSBsaWNlbmNpYSBpZO+/vW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuDQoNCkF0cmlidWNp77+9biDvv70gTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuDQoNCkF0cmlidWNp77+9biDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4NCg0KQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwg77+9IENvbXBhcnRpciBJZ3VhbCAoQ0Mg77+9IEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjae+/vW4gZGUgbGFzIG9icmFzIGRlcml2YWRhcyBzZSBoYWdhIG1lZGlhbnRlIGxpY2VuY2lhIGlk77+9bnRpY2EgYSBsYSBkZSBsYSBvYnJhIG9yaWdpbmFsLCByZWNvbm9jaWVuZG8gYSBsb3MgYXV0b3Jlcy4NCg0KQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwg77+9IFNpbiBEZXJpdmFkYXMgKENDIC0gQnktTkMtTkQpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSwgcGVybyBubyBzZSBwZXJtaXRlIGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzIHkgbm8gc2UgcGVybWl0ZSB1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBkZWJpZW5kbyByZWNvbm9jZXIgYWwgYXV0b3IuDQoNCkxvcyB1c29zIHByZXZpc3RvcyBlbiBsYXMgbGljZW5jaWFzIGluY2x1eWVuIGxhIGVuYWplbmFjae+/vW4sIHJlcHJvZHVjY2nvv71uLCBjb211bmljYWNp77+9biwgcHVibGljYWNp77+9biwgZGlzdHJpYnVjae+/vW4geSBwdWVzdGEgYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28uIExhIGNyZWFjae+/vW4gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nvv71uLCB0cmFkdWNjae+/vW4geSBlbCByZW1peC4NCg0KQ3VhbmRvIHNlIHNlbGVjY2lvbmUgdW5hIGxpY2VuY2lhIHF1ZSBoYWJpbGl0ZSB1c29zIGNvbWVyY2lhbGVzLCBlbCBkZXDvv71zaXRvIGRlYmVy77+9IHNlciBhY29tcGHvv71hZG8gZGVsIGF2YWwgZGVsIGplcmFyY2Egbe+/vXhpbW8gZGVsIFNlcnZpY2lvIGNvcnJlc3BvbmRpZW50ZS4NCg0KDQoNCg0KDQoNCg0KDQo=Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:58.336036COLIBRI - Universidad de la Repúblicafalse
spellingShingle Domination Invariant of a Diameter Constrained Network Reliability Model
Cancela, Héctor
Graph theory
Domination
Diameter-constrained network reliability
status_str publishedVersion
title Domination Invariant of a Diameter Constrained Network Reliability Model
title_full Domination Invariant of a Diameter Constrained Network Reliability Model
title_fullStr Domination Invariant of a Diameter Constrained Network Reliability Model
title_full_unstemmed Domination Invariant of a Diameter Constrained Network Reliability Model
title_short Domination Invariant of a Diameter Constrained Network Reliability Model
title_sort Domination Invariant of a Diameter Constrained Network Reliability Model
topic Graph theory
Domination
Diameter-constrained network reliability
url http://hdl.handle.net/20.500.12008/3504