Building a gold standard dataset to identify articles about geographic information science
Resumen:
To know the overall regional or international scientific production is of vital importance to many areas of knowledge. Nevertheless, in interdisciplinary areas such as Geographic Information Science (GISc) it is not enough to just count papers published in specific journals. Most of them, as is the case of the International Journal of Remote Sensing (IJRS), welcome GISc papers but are not exclusive to that area so the production assignable to authors in the region must consider not only affiliation but also whether or not each paper falls into the theme of GISc. IJRS publishes far more papers than any other GISc journal, so it is important to assess quantitatively how many of them are of GISc. In this work, a representative sample of IJRS articles published over a period of almost 30 years was analyzed using a specific GISc definition. With these data, a manual classification methodology through a set of experts was carried out, and a dataset was built, analyzed, and statistically tested. As a result we estimate that between 47 and 76% of the IJRS articles can be considered from GISc, with a confidence level of 95%. Aside from the primary goal, this set could be used as a gold standard for future classification tasks. It constitutes the first GISc dataset of this kind, that may be used to train artificial intelligence systems capable of performing the same classification automatically and in a massive way. A similar procedure could be applied to other interdisciplinary fields of knowledge as well.
2022 | |
Gold standard Manual classification Indexer consistency Geographic information science |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/39730 | |
Acceso abierto | |
Licencia Creative Commons Atribución (CC - By 4.0) |
_version_ | 1807522799214919680 |
---|---|
author | López-Vázquez, Carlos |
author2 | Hochsztain, Esther Resnichenko, Yuri |
author2_role | author author |
author_facet | López-Vázquez, Carlos Hochsztain, Esther Resnichenko, Yuri |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a0ebbeafb9d2ec7cbb19d7137ebc392c aaf2791046b84599cb1e37492908be62 9fdbed07f52437945402c4e70fa4773e 1787161a8776a93386acce1e11eb85b7 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/39730/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/39730/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/39730/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/39730/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/39730/1/101109ACCESS20223150869.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | López-Vázquez Carlos, Universidad ORT (Uruguay). Facultad de Ingeniería. Hochsztain Esther, Universidad de la República (Uruguay). Facultad de Ciencias Económicas y Administración. Resnichenko Yuri, Universidad de la República (Uruguay). Facultad de Ciencias. Departamento de Geografía. |
dc.creator.none.fl_str_mv | López-Vázquez, Carlos Hochsztain, Esther Resnichenko, Yuri |
dc.date.accessioned.none.fl_str_mv | 2023-08-30T14:29:56Z |
dc.date.available.none.fl_str_mv | 2023-08-30T14:29:56Z |
dc.date.issued.none.fl_str_mv | 2022 |
dc.description.abstract.none.fl_txt_mv | To know the overall regional or international scientific production is of vital importance to many areas of knowledge. Nevertheless, in interdisciplinary areas such as Geographic Information Science (GISc) it is not enough to just count papers published in specific journals. Most of them, as is the case of the International Journal of Remote Sensing (IJRS), welcome GISc papers but are not exclusive to that area so the production assignable to authors in the region must consider not only affiliation but also whether or not each paper falls into the theme of GISc. IJRS publishes far more papers than any other GISc journal, so it is important to assess quantitatively how many of them are of GISc. In this work, a representative sample of IJRS articles published over a period of almost 30 years was analyzed using a specific GISc definition. With these data, a manual classification methodology through a set of experts was carried out, and a dataset was built, analyzed, and statistically tested. As a result we estimate that between 47 and 76% of the IJRS articles can be considered from GISc, with a confidence level of 95%. Aside from the primary goal, this set could be used as a gold standard for future classification tasks. It constitutes the first GISc dataset of this kind, that may be used to train artificial intelligence systems capable of performing the same classification automatically and in a massive way. A similar procedure could be applied to other interdisciplinary fields of knowledge as well. |
dc.description.es.fl_txt_mv | Trabajo elaborado por otros catorce autores. |
dc.format.extent.es.fl_str_mv | 11 h. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | López-Vázquez, C, Hochsztain, E y Resnichenko, Y [y otros autores]. "Building a gold standard dataset to identify articles about geographic information science". IEEE Access. [en línea] 2022,10: 19926 - 19936. 11 h. DOI: 10.1109/ACCESS.2022.3150869 |
dc.identifier.doi.none.fl_str_mv | 10.1109/ACCESS.2022.3150869 |
dc.identifier.issn.none.fl_str_mv | 2169-3536 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/39730 |
dc.language.iso.none.fl_str_mv | en_US eng |
dc.publisher.es.fl_str_mv | IEEE |
dc.relation.ispartof.es.fl_str_mv | IEEE Access, 2022,10: 19926 - 19936. |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución (CC - By 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Gold standard Manual classification Indexer consistency Geographic information science |
dc.title.none.fl_str_mv | Building a gold standard dataset to identify articles about geographic information science |
dc.type.es.fl_str_mv | Artículo |
dc.type.none.fl_str_mv | info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | Trabajo elaborado por otros catorce autores. |
eu_rights_str_mv | openAccess |
format | article |
id | COLIBRI_e67a3a0d01342efb6842abc9040789e9 |
identifier_str_mv | López-Vázquez, C, Hochsztain, E y Resnichenko, Y [y otros autores]. "Building a gold standard dataset to identify articles about geographic information science". IEEE Access. [en línea] 2022,10: 19926 - 19936. 11 h. DOI: 10.1109/ACCESS.2022.3150869 2169-3536 10.1109/ACCESS.2022.3150869 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en_US |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/39730 |
publishDate | 2022 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución (CC - By 4.0) |
spelling | López-Vázquez Carlos, Universidad ORT (Uruguay). Facultad de Ingeniería.Hochsztain Esther, Universidad de la República (Uruguay). Facultad de Ciencias Económicas y Administración.Resnichenko Yuri, Universidad de la República (Uruguay). Facultad de Ciencias. Departamento de Geografía.2023-08-30T14:29:56Z2023-08-30T14:29:56Z2022López-Vázquez, C, Hochsztain, E y Resnichenko, Y [y otros autores]. "Building a gold standard dataset to identify articles about geographic information science". IEEE Access. [en línea] 2022,10: 19926 - 19936. 11 h. DOI: 10.1109/ACCESS.2022.31508692169-3536https://hdl.handle.net/20.500.12008/3973010.1109/ACCESS.2022.3150869Trabajo elaborado por otros catorce autores.To know the overall regional or international scientific production is of vital importance to many areas of knowledge. Nevertheless, in interdisciplinary areas such as Geographic Information Science (GISc) it is not enough to just count papers published in specific journals. Most of them, as is the case of the International Journal of Remote Sensing (IJRS), welcome GISc papers but are not exclusive to that area so the production assignable to authors in the region must consider not only affiliation but also whether or not each paper falls into the theme of GISc. IJRS publishes far more papers than any other GISc journal, so it is important to assess quantitatively how many of them are of GISc. In this work, a representative sample of IJRS articles published over a period of almost 30 years was analyzed using a specific GISc definition. With these data, a manual classification methodology through a set of experts was carried out, and a dataset was built, analyzed, and statistically tested. As a result we estimate that between 47 and 76% of the IJRS articles can be considered from GISc, with a confidence level of 95%. Aside from the primary goal, this set could be used as a gold standard for future classification tasks. It constitutes the first GISc dataset of this kind, that may be used to train artificial intelligence systems capable of performing the same classification automatically and in a massive way. A similar procedure could be applied to other interdisciplinary fields of knowledge as well.Submitted by Farías Verónica (vfarias@fcien.edu.uy) on 2023-08-28T13:04:09Z No. of bitstreams: 2 license_rdf: 19875 bytes, checksum: 9fdbed07f52437945402c4e70fa4773e (MD5) 101109ACCESS20223150869.pdf: 2066563 bytes, checksum: 1787161a8776a93386acce1e11eb85b7 (MD5)Approved for entry into archive by Faget Cecilia (lfaget@fcien.edu.uy) on 2023-08-30T13:47:41Z (GMT) No. of bitstreams: 2 license_rdf: 19875 bytes, checksum: 9fdbed07f52437945402c4e70fa4773e (MD5) 101109ACCESS20223150869.pdf: 2066563 bytes, checksum: 1787161a8776a93386acce1e11eb85b7 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2023-08-30T14:29:56Z (GMT). No. of bitstreams: 2 license_rdf: 19875 bytes, checksum: 9fdbed07f52437945402c4e70fa4773e (MD5) 101109ACCESS20223150869.pdf: 2066563 bytes, checksum: 1787161a8776a93386acce1e11eb85b7 (MD5) Previous issue date: 202211 h.application/pdfen_USengIEEEIEEE Access, 2022,10: 19926 - 19936.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución (CC - By 4.0)Gold standardManual classificationIndexer consistencyGeographic information scienceBuilding a gold standard dataset to identify articles about geographic information scienceArtículoinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaLópez-Vázquez, CarlosHochsztain, EstherResnichenko, YuriLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/39730/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-844http://localhost:8080/xmlui/bitstream/20.500.12008/39730/2/license_urla0ebbeafb9d2ec7cbb19d7137ebc392cMD52license_textlicense_texttext/html; charset=utf-838534http://localhost:8080/xmlui/bitstream/20.500.12008/39730/3/license_textaaf2791046b84599cb1e37492908be62MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-819875http://localhost:8080/xmlui/bitstream/20.500.12008/39730/4/license_rdf9fdbed07f52437945402c4e70fa4773eMD54ORIGINAL101109ACCESS20223150869.pdf101109ACCESS20223150869.pdfapplication/pdf2066563http://localhost:8080/xmlui/bitstream/20.500.12008/39730/1/101109ACCESS20223150869.pdf1787161a8776a93386acce1e11eb85b7MD5120.500.12008/397302023-08-30 11:29:56.309oai:colibri.udelar.edu.uy:20.500.12008/39730VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:29:05.841544COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Building a gold standard dataset to identify articles about geographic information science López-Vázquez, Carlos Gold standard Manual classification Indexer consistency Geographic information science |
status_str | publishedVersion |
title | Building a gold standard dataset to identify articles about geographic information science |
title_full | Building a gold standard dataset to identify articles about geographic information science |
title_fullStr | Building a gold standard dataset to identify articles about geographic information science |
title_full_unstemmed | Building a gold standard dataset to identify articles about geographic information science |
title_short | Building a gold standard dataset to identify articles about geographic information science |
title_sort | Building a gold standard dataset to identify articles about geographic information science |
topic | Gold standard Manual classification Indexer consistency Geographic information science |
url | https://hdl.handle.net/20.500.12008/39730 |