Conteo de multitudes a través de redes neuronales y aprendizaje profundo.
Supervisor(es): Etcheverry, Mathías - Musé, Pablo
Resumen:
Este trabajo es un acercamiento al área del conteo de multitudes, es decir, dada una imagen predecir correctamente cuántas personas hay en la misma, y opcionalmente brindar una noción de su posición en la imagen (en forma de un mapa de calor por ejemplo). Para resolver dicho problema se emplean técnicas de aprendizaje automático, más concretamente aprendizaje profundo orientado a la visión artificial. En este trabajo se estudió y plasmó en este informe cómo estas técnicas aplicadas al conteo de multitudes evolucionaron en la última década, posteriormente enfocándose en detallar las direcciones, técnicas y dificultades presentes en el estado del arte contemporáneo, así como también enumerando posibles direcciones en las que el mismo podría dirigirse en el futuro cercano (basadas en trabajos y arquitecturas emergentes y de gran promesa). Como parte de la experimentación se etiquetó un conjunto de datos a través de un módulo de taller, se evaluó la similitud entre las anotaciones realizadas, discutiendo sobre la dificultad de la tarea y el posible ruido en anotaciones de conjuntos ya existentes. También se evaluó el desempeño de varios modelos pre-entrenados en múltiples conjuntos de evaluación, discutiendo sobre particularidades, relaciones y anomalías encontradas en los resultados de sus métricas generales y algunos resultados destacados.
2023 | |
Visión artificial Conteo de multitudes Aprendizaje profundo |
|
Español | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/39243 | |
Acceso abierto | |
Licencia Creative Commons Atribución (CC - By 4.0) |
_version_ | 1807523229399515136 |
---|---|
author | Gambone, Renzo |
author_facet | Gambone, Renzo |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a0ebbeafb9d2ec7cbb19d7137ebc392c aaf2791046b84599cb1e37492908be62 9fdbed07f52437945402c4e70fa4773e 2622eb7effab850e598c233b74a4d6bf |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/39243/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/39243/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/39243/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/39243/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/39243/1/Ga23.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Gambone Renzo, Universidad de la República (Uruguay). Facultad de Ingeniería |
dc.creator.advisor.none.fl_str_mv | Etcheverry, Mathías Musé, Pablo |
dc.creator.none.fl_str_mv | Gambone, Renzo |
dc.date.accessioned.none.fl_str_mv | 2023-08-14T17:56:17Z |
dc.date.available.none.fl_str_mv | 2023-08-14T17:56:17Z |
dc.date.issued.none.fl_str_mv | 2023 |
dc.description.abstract.none.fl_txt_mv | Este trabajo es un acercamiento al área del conteo de multitudes, es decir, dada una imagen predecir correctamente cuántas personas hay en la misma, y opcionalmente brindar una noción de su posición en la imagen (en forma de un mapa de calor por ejemplo). Para resolver dicho problema se emplean técnicas de aprendizaje automático, más concretamente aprendizaje profundo orientado a la visión artificial. En este trabajo se estudió y plasmó en este informe cómo estas técnicas aplicadas al conteo de multitudes evolucionaron en la última década, posteriormente enfocándose en detallar las direcciones, técnicas y dificultades presentes en el estado del arte contemporáneo, así como también enumerando posibles direcciones en las que el mismo podría dirigirse en el futuro cercano (basadas en trabajos y arquitecturas emergentes y de gran promesa). Como parte de la experimentación se etiquetó un conjunto de datos a través de un módulo de taller, se evaluó la similitud entre las anotaciones realizadas, discutiendo sobre la dificultad de la tarea y el posible ruido en anotaciones de conjuntos ya existentes. También se evaluó el desempeño de varios modelos pre-entrenados en múltiples conjuntos de evaluación, discutiendo sobre particularidades, relaciones y anomalías encontradas en los resultados de sus métricas generales y algunos resultados destacados. |
dc.format.extent.es.fl_str_mv | 156 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Gambone, R. Conteo de multitudes a través de redes neuronales y aprendizaje profundo [en línea]. Tesis de grado. Montevideo : Udelar. FI. INCO, 2023. |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/39243 |
dc.language.iso.none.fl_str_mv | es spa |
dc.publisher.es.fl_str_mv | Udelar. FI. |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución (CC - By 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Visión artificial Conteo de multitudes Aprendizaje profundo |
dc.title.none.fl_str_mv | Conteo de multitudes a través de redes neuronales y aprendizaje profundo. |
dc.type.es.fl_str_mv | Tesis de grado |
dc.type.none.fl_str_mv | info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/acceptedVersion |
description | Este trabajo es un acercamiento al área del conteo de multitudes, es decir, dada una imagen predecir correctamente cuántas personas hay en la misma, y opcionalmente brindar una noción de su posición en la imagen (en forma de un mapa de calor por ejemplo). Para resolver dicho problema se emplean técnicas de aprendizaje automático, más concretamente aprendizaje profundo orientado a la visión artificial. En este trabajo se estudió y plasmó en este informe cómo estas técnicas aplicadas al conteo de multitudes evolucionaron en la última década, posteriormente enfocándose en detallar las direcciones, técnicas y dificultades presentes en el estado del arte contemporáneo, así como también enumerando posibles direcciones en las que el mismo podría dirigirse en el futuro cercano (basadas en trabajos y arquitecturas emergentes y de gran promesa). Como parte de la experimentación se etiquetó un conjunto de datos a través de un módulo de taller, se evaluó la similitud entre las anotaciones realizadas, discutiendo sobre la dificultad de la tarea y el posible ruido en anotaciones de conjuntos ya existentes. También se evaluó el desempeño de varios modelos pre-entrenados en múltiples conjuntos de evaluación, discutiendo sobre particularidades, relaciones y anomalías encontradas en los resultados de sus métricas generales y algunos resultados destacados. |
eu_rights_str_mv | openAccess |
format | bachelorThesis |
id | COLIBRI_e36c2a180c0aa8583fb6f7df96d49697 |
identifier_str_mv | Gambone, R. Conteo de multitudes a través de redes neuronales y aprendizaje profundo [en línea]. Tesis de grado. Montevideo : Udelar. FI. INCO, 2023. |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | spa |
language_invalid_str_mv | es |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/39243 |
publishDate | 2023 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución (CC - By 4.0) |
spelling | Gambone Renzo, Universidad de la República (Uruguay). Facultad de Ingeniería2023-08-14T17:56:17Z2023-08-14T17:56:17Z2023Gambone, R. Conteo de multitudes a través de redes neuronales y aprendizaje profundo [en línea]. Tesis de grado. Montevideo : Udelar. FI. INCO, 2023.https://hdl.handle.net/20.500.12008/39243Este trabajo es un acercamiento al área del conteo de multitudes, es decir, dada una imagen predecir correctamente cuántas personas hay en la misma, y opcionalmente brindar una noción de su posición en la imagen (en forma de un mapa de calor por ejemplo). Para resolver dicho problema se emplean técnicas de aprendizaje automático, más concretamente aprendizaje profundo orientado a la visión artificial. En este trabajo se estudió y plasmó en este informe cómo estas técnicas aplicadas al conteo de multitudes evolucionaron en la última década, posteriormente enfocándose en detallar las direcciones, técnicas y dificultades presentes en el estado del arte contemporáneo, así como también enumerando posibles direcciones en las que el mismo podría dirigirse en el futuro cercano (basadas en trabajos y arquitecturas emergentes y de gran promesa). Como parte de la experimentación se etiquetó un conjunto de datos a través de un módulo de taller, se evaluó la similitud entre las anotaciones realizadas, discutiendo sobre la dificultad de la tarea y el posible ruido en anotaciones de conjuntos ya existentes. También se evaluó el desempeño de varios modelos pre-entrenados en múltiples conjuntos de evaluación, discutiendo sobre particularidades, relaciones y anomalías encontradas en los resultados de sus métricas generales y algunos resultados destacados.Submitted by Cabrera Gabriela (gfcabrerarossi@gmail.com) on 2023-08-09T16:00:16Z No. of bitstreams: 2 license_rdf: 19875 bytes, checksum: 9fdbed07f52437945402c4e70fa4773e (MD5) Ga23.pdf: 13780031 bytes, checksum: 2622eb7effab850e598c233b74a4d6bf (MD5)Approved for entry into archive by Berón Cecilia (cberon@fing.edu.uy) on 2023-08-14T17:36:46Z (GMT) No. of bitstreams: 2 license_rdf: 19875 bytes, checksum: 9fdbed07f52437945402c4e70fa4773e (MD5) Ga23.pdf: 13780031 bytes, checksum: 2622eb7effab850e598c233b74a4d6bf (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2023-08-14T17:56:17Z (GMT). No. of bitstreams: 2 license_rdf: 19875 bytes, checksum: 9fdbed07f52437945402c4e70fa4773e (MD5) Ga23.pdf: 13780031 bytes, checksum: 2622eb7effab850e598c233b74a4d6bf (MD5) Previous issue date: 2023156 p.application/pdfesspaUdelar. FI.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución (CC - By 4.0)Visión artificialConteo de multitudesAprendizaje profundoConteo de multitudes a través de redes neuronales y aprendizaje profundo.Tesis de gradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaGambone, RenzoEtcheverry, MathíasMusé, PabloUniversidad de la República (Uruguay). Facultad de Ingeniería.Ingeniero en Computación.LICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/39243/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-844http://localhost:8080/xmlui/bitstream/20.500.12008/39243/2/license_urla0ebbeafb9d2ec7cbb19d7137ebc392cMD52license_textlicense_texttext/html; charset=utf-838534http://localhost:8080/xmlui/bitstream/20.500.12008/39243/3/license_textaaf2791046b84599cb1e37492908be62MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-819875http://localhost:8080/xmlui/bitstream/20.500.12008/39243/4/license_rdf9fdbed07f52437945402c4e70fa4773eMD54ORIGINALGa23.pdfGa23.pdfapplication/pdf13780031http://localhost:8080/xmlui/bitstream/20.500.12008/39243/1/Ga23.pdf2622eb7effab850e598c233b74a4d6bfMD5120.500.12008/392432024-04-12 14:06:41.004oai:colibri.udelar.edu.uy:20.500.12008/39243VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:46:28.724048COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Conteo de multitudes a través de redes neuronales y aprendizaje profundo. Gambone, Renzo Visión artificial Conteo de multitudes Aprendizaje profundo |
status_str | acceptedVersion |
title | Conteo de multitudes a través de redes neuronales y aprendizaje profundo. |
title_full | Conteo de multitudes a través de redes neuronales y aprendizaje profundo. |
title_fullStr | Conteo de multitudes a través de redes neuronales y aprendizaje profundo. |
title_full_unstemmed | Conteo de multitudes a través de redes neuronales y aprendizaje profundo. |
title_short | Conteo de multitudes a través de redes neuronales y aprendizaje profundo. |
title_sort | Conteo de multitudes a través de redes neuronales y aprendizaje profundo. |
topic | Visión artificial Conteo de multitudes Aprendizaje profundo |
url | https://hdl.handle.net/20.500.12008/39243 |