Dynamical incoherence for a large class of partially hyperbolic diffeomorphisms
Resumen:
We show that if a partially hyperbolic diffeomorphism of a Seifert manifold induces a map in the base which has a pseudo-Anosov component then it cannot be dynamically coherent. This extends work of Bonatti, Gogolev, Hammerlindl and Potrie to the whole isotopy class. We relate the techniques with the study of certain partially hyperbolic diffeomorphisms in hyperbolic 3-manifolds performed in the previous paper by the authors. The appendix reviews some consequences of the Nielsen-Thurston classification of surface homeomorphisms to the dynamics of lifts of such maps to the universal cover.
2020 | |
Partial hyperbolicity 3-manifold topology Foliations Classification |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/38121 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Resultados similares
-
Partially hyperbolic diffeomorphisms homotopic to the identity in dimension 3, II: Branching foliations
Autor(es):: Barthelmé, Thomas
Fecha de publicación:: (2023) -
Ergodicity of partially hyperbolic diffeomorphisms in hyperbolic 3-manifolds
Autor(es):: Fenley, Sergio
Fecha de publicación:: (2022) -
Anomalous partially hyperbolic diffeomorphisms II: stably ergodic examples
Autor(es):: Bonatti, Christian
Fecha de publicación:: (2016) -
Dynamical coherence in isotopy classes of fibered lifted partially hyperbolic diffeomorphisms
Autor(es):: Piñeyrúa Ramos, Luis Pedro
Fecha de publicación:: (2023) -
Minimality of the action on the universal circle of uniform foliations
Autor(es):: Fenley, Sergio
Fecha de publicación:: (2021)