Outliers in biometrics : an a-contrario approach
Supervisor(es): Lecumberry, Federico - Fernández, Alicia
Resumen:
This thesis addresses the problems of biometrics : how a persons identity could be determined or validated by using some physical or behavioral characteristic. Biometry is one of the main research topics in the field of pattern recognition due to its impact on several applications in security and human-machine interaction environments. Several works focus on the improvement of the features extracted in the particular system being presented (face, fingerprint or speech recognition among others), or the metrics used to compare such features, in this work the classification stage is particularly tackled.A statistical approach is presented based on a well-known a-contrario validation strategy. Techniques based on such framework have been widely used in the fields of image processing and computer vision for the detection and matching of visual features. In this work, the method ability to detect outliers/inliers is exploited to detect when two compared biometric samples correspond to the same person. This method is adapted and applied to each of the usual biometric tasks.First, it is applied to the task of biometric verification, modeling it as a two- class classification problem. The introduced strategy was validated using different datasets and compared against other state-of-the-art commonly used classification methods. Findings of this work have been presented at the 2014 International Conference on Pattern Recognition Applications and Methods (ICPRAM-2014), by applying the framework to the face recognition problem in particular. An extension of the conference article has been published as a journal article. In this thesis, the presented strategy is reviewed with an experimental evaluation done in several bigger datasets.Secondly, the a-contrario framework is applied to the identification task. The method is used to validate the confidence of an identification system outputs. What is normally called in the literature as System Response Reliability (SRR). Such problem has been thoroughly studied lately, the key advantages of using such control are analyzed and discussed. The obtained performance is validated on multiple datasets by comparing with other state-of-the-art approaches. This work has been presented on the 2016 International Conference of the Biometrics Special Interest Group (BIOSIG-2016).Finally, the framework is applied to biometric fusion. The key differences in such scenario and the corresponding proposed framework adaptations are analyzed. The proposed technique is evaluated in both artificially generated as real-scenario datasets. The performance is compared against other state-of-the-art statistically fusion strategies
2017 | |
Procesamiento de Señales | |
Español | |
Universidad de la República | |
COLIBRI | |
http://hdl.handle.net/20.500.12008/20169 | |
Acceso abierto | |
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND) |
_version_ | 1807522998991716352 |
---|---|
author | Di Martino, Luis |
author_facet | Di Martino, Luis |
author_role | author |
bitstream.checksum.fl_str_mv | 7f2e2c17ef6585de66da58d1bfa8b5e1 9833653f73f7853880c94a6fead477b1 4afdbb8c545fd630ea7db775da747b2f 9da0b6dfac957114c6a7714714b86306 4093ff7000f6ade2d43fda4992806e8d |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/20169/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/20169/2/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/20169/3/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/20169/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/20169/1/Di+17.pdf |
collection | COLIBRI |
dc.creator.advisor.none.fl_str_mv | Lecumberry, Federico Fernández, Alicia |
dc.creator.none.fl_str_mv | Di Martino, Luis |
dc.date.accessioned.none.fl_str_mv | 2019-02-21T20:55:37Z |
dc.date.available.none.fl_str_mv | 2019-02-21T20:55:37Z |
dc.date.issued.es.fl_str_mv | 2017 |
dc.date.submitted.es.fl_str_mv | 20190221 |
dc.description.abstract.none.fl_txt_mv | This thesis addresses the problems of biometrics : how a persons identity could be determined or validated by using some physical or behavioral characteristic. Biometry is one of the main research topics in the field of pattern recognition due to its impact on several applications in security and human-machine interaction environments. Several works focus on the improvement of the features extracted in the particular system being presented (face, fingerprint or speech recognition among others), or the metrics used to compare such features, in this work the classification stage is particularly tackled.A statistical approach is presented based on a well-known a-contrario validation strategy. Techniques based on such framework have been widely used in the fields of image processing and computer vision for the detection and matching of visual features. In this work, the method ability to detect outliers/inliers is exploited to detect when two compared biometric samples correspond to the same person. This method is adapted and applied to each of the usual biometric tasks.First, it is applied to the task of biometric verification, modeling it as a two- class classification problem. The introduced strategy was validated using different datasets and compared against other state-of-the-art commonly used classification methods. Findings of this work have been presented at the 2014 International Conference on Pattern Recognition Applications and Methods (ICPRAM-2014), by applying the framework to the face recognition problem in particular. An extension of the conference article has been published as a journal article. In this thesis, the presented strategy is reviewed with an experimental evaluation done in several bigger datasets.Secondly, the a-contrario framework is applied to the identification task. The method is used to validate the confidence of an identification system outputs. What is normally called in the literature as System Response Reliability (SRR). Such problem has been thoroughly studied lately, the key advantages of using such control are analyzed and discussed. The obtained performance is validated on multiple datasets by comparing with other state-of-the-art approaches. This work has been presented on the 2016 International Conference of the Biometrics Special Interest Group (BIOSIG-2016).Finally, the framework is applied to biometric fusion. The key differences in such scenario and the corresponding proposed framework adaptations are analyzed. The proposed technique is evaluated in both artificially generated as real-scenario datasets. The performance is compared against other state-of-the-art statistically fusion strategies |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | DI MARTINO, L. "Outliers in biometrics : an a-contrario approach". Tesis de maestría, Universidad de la República (Uruguay). Facultad de Ingeniería, 2017. |
dc.identifier.uri.none.fl_str_mv | http://hdl.handle.net/20.500.12008/20169 |
dc.language.iso.none.fl_str_mv | es spa |
dc.publisher.es.fl_str_mv | UR. FING |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.other.es.fl_str_mv | Procesamiento de Señales |
dc.title.none.fl_str_mv | Outliers in biometrics : an a-contrario approach |
dc.type.es.fl_str_mv | Tesis de maestría |
dc.type.none.fl_str_mv | info:eu-repo/semantics/masterThesis |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/acceptedVersion |
description | This thesis addresses the problems of biometrics : how a persons identity could be determined or validated by using some physical or behavioral characteristic. Biometry is one of the main research topics in the field of pattern recognition due to its impact on several applications in security and human-machine interaction environments. Several works focus on the improvement of the features extracted in the particular system being presented (face, fingerprint or speech recognition among others), or the metrics used to compare such features, in this work the classification stage is particularly tackled.A statistical approach is presented based on a well-known a-contrario validation strategy. Techniques based on such framework have been widely used in the fields of image processing and computer vision for the detection and matching of visual features. In this work, the method ability to detect outliers/inliers is exploited to detect when two compared biometric samples correspond to the same person. This method is adapted and applied to each of the usual biometric tasks.First, it is applied to the task of biometric verification, modeling it as a two- class classification problem. The introduced strategy was validated using different datasets and compared against other state-of-the-art commonly used classification methods. Findings of this work have been presented at the 2014 International Conference on Pattern Recognition Applications and Methods (ICPRAM-2014), by applying the framework to the face recognition problem in particular. An extension of the conference article has been published as a journal article. In this thesis, the presented strategy is reviewed with an experimental evaluation done in several bigger datasets.Secondly, the a-contrario framework is applied to the identification task. The method is used to validate the confidence of an identification system outputs. What is normally called in the literature as System Response Reliability (SRR). Such problem has been thoroughly studied lately, the key advantages of using such control are analyzed and discussed. The obtained performance is validated on multiple datasets by comparing with other state-of-the-art approaches. This work has been presented on the 2016 International Conference of the Biometrics Special Interest Group (BIOSIG-2016).Finally, the framework is applied to biometric fusion. The key differences in such scenario and the corresponding proposed framework adaptations are analyzed. The proposed technique is evaluated in both artificially generated as real-scenario datasets. The performance is compared against other state-of-the-art statistically fusion strategies |
eu_rights_str_mv | openAccess |
format | masterThesis |
id | COLIBRI_e021c97c052fb7f60128d6e218352897 |
identifier_str_mv | DI MARTINO, L. "Outliers in biometrics : an a-contrario approach". Tesis de maestría, Universidad de la República (Uruguay). Facultad de Ingeniería, 2017. |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | spa |
language_invalid_str_mv | es |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/20169 |
publishDate | 2017 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND) |
spelling | 2019-02-21T20:55:37Z2019-02-21T20:55:37Z201720190221DI MARTINO, L. "Outliers in biometrics : an a-contrario approach". Tesis de maestría, Universidad de la República (Uruguay). Facultad de Ingeniería, 2017.http://hdl.handle.net/20.500.12008/20169This thesis addresses the problems of biometrics : how a persons identity could be determined or validated by using some physical or behavioral characteristic. Biometry is one of the main research topics in the field of pattern recognition due to its impact on several applications in security and human-machine interaction environments. Several works focus on the improvement of the features extracted in the particular system being presented (face, fingerprint or speech recognition among others), or the metrics used to compare such features, in this work the classification stage is particularly tackled.A statistical approach is presented based on a well-known a-contrario validation strategy. Techniques based on such framework have been widely used in the fields of image processing and computer vision for the detection and matching of visual features. In this work, the method ability to detect outliers/inliers is exploited to detect when two compared biometric samples correspond to the same person. This method is adapted and applied to each of the usual biometric tasks.First, it is applied to the task of biometric verification, modeling it as a two- class classification problem. The introduced strategy was validated using different datasets and compared against other state-of-the-art commonly used classification methods. Findings of this work have been presented at the 2014 International Conference on Pattern Recognition Applications and Methods (ICPRAM-2014), by applying the framework to the face recognition problem in particular. An extension of the conference article has been published as a journal article. In this thesis, the presented strategy is reviewed with an experimental evaluation done in several bigger datasets.Secondly, the a-contrario framework is applied to the identification task. The method is used to validate the confidence of an identification system outputs. What is normally called in the literature as System Response Reliability (SRR). Such problem has been thoroughly studied lately, the key advantages of using such control are analyzed and discussed. The obtained performance is validated on multiple datasets by comparing with other state-of-the-art approaches. This work has been presented on the 2016 International Conference of the Biometrics Special Interest Group (BIOSIG-2016).Finally, the framework is applied to biometric fusion. The key differences in such scenario and the corresponding proposed framework adaptations are analyzed. The proposed technique is evaluated in both artificially generated as real-scenario datasets. The performance is compared against other state-of-the-art statistically fusion strategiesMade available in DSpace on 2019-02-21T20:55:37Z (GMT). No. of bitstreams: 5 Di 17.pdf: 3731734 bytes, checksum: 4093ff7000f6ade2d43fda4992806e8d (MD5) license_text: 21936 bytes, checksum: 9833653f73f7853880c94a6fead477b1 (MD5) license_url: 49 bytes, checksum: 4afdbb8c545fd630ea7db775da747b2f (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) license.txt: 4194 bytes, checksum: 7f2e2c17ef6585de66da58d1bfa8b5e1 (MD5) Previous issue date: 2017application/pdfesspaUR. FINGLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)Procesamiento de SeñalesOutliers in biometrics : an a-contrario approachTesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaDi Martino, LuisLecumberry, FedericoFernández, AliciaUniversidad de la República (Uruguay). Facultad de IngenieríaMagíster en Ingeniería EléctricaProcesamiento de SeñalesTratamiento de ImágenesLICENSElicense.txttext/plain4194http://localhost:8080/xmlui/bitstream/20.500.12008/20169/5/license.txt7f2e2c17ef6585de66da58d1bfa8b5e1MD55CC-LICENSElicense_textapplication/octet-stream21936http://localhost:8080/xmlui/bitstream/20.500.12008/20169/2/license_text9833653f73f7853880c94a6fead477b1MD52license_urlapplication/octet-stream49http://localhost:8080/xmlui/bitstream/20.500.12008/20169/3/license_url4afdbb8c545fd630ea7db775da747b2fMD53license_rdfapplication/octet-stream23148http://localhost:8080/xmlui/bitstream/20.500.12008/20169/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALDi 17.pdfapplication/pdf3731734http://localhost:8080/xmlui/bitstream/20.500.12008/20169/1/Di+17.pdf4093ff7000f6ade2d43fda4992806e8dMD5120.500.12008/201692024-07-26 17:16:38.491oai:colibri.udelar.edu.uy:20.500.12008/20169VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDvv71ibGljYS4gKFJlcy4gTu+/vSA5MSBkZSBDLkQuQy4gZGUgOC9JSUkvMTk5NCDvv70gRC5PLiA3L0lWLzE5OTQpIHkgIHBvciBsYSBPcmRlbmFuemEgZGVsIFJlcG9zaXRvcmlvIEFiaWVydG8gZGUgbGEgVW5pdmVyc2lkYWQgZGUgbGEgUmVw77+9YmxpY2EgKFJlcy4gTu+/vSAxNiBkZSBDLkQuQy4gZGUgMDcvMTAvMjAxNCkuIAoKQWNlcHRhbmRvIGVsIGF1dG9yIGVzdG9zIHTvv71ybWlub3MgeSBjb25kaWNpb25lcyBkZSBkZXDvv71zaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcO+/vWJsaWNhIHByb2NlZGVy77+9IGE6ICAKCmEpIGFyY2hpdmFyIG3vv71zIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nvv71uCmIpIGNvbnZlcnRpciBsYSBvYnJhIGEgb3Ryb3MgZm9ybWF0b3Mgc2kgZnVlcmEgbmVjZXNhcmlvICBwYXJhIGZhY2lsaXRhciBzdSBwcmVzZXJ2YWNp77+9biB5IGFjY2VzaWJpbGlkYWQgc2luIGFsdGVyYXIgc3UgY29udGVuaWRvLgpjKSByZWFsaXphciBsYSBjb211bmljYWNp77+9biBw77+9YmxpY2EgeSBkaXNwb25lciBlbCBhY2Nlc28gbGlicmUgeSBncmF0dWl0byBhIHRyYXbvv71zIGRlIEludGVybmV0IG1lZGlhbnRlIGxhIHB1YmxpY2Fjae+/vW4gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcu+/vSBzb2xpY2l0YXIgdW4gcGVy77+9b2RvIGRlIGVtYmFyZ28gc29icmUgbGEgZGlzcG9uaWJpbGlkYWQgcO+/vWJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFy77+9IGEgcGFydGlyIGRlIGxhIGFjZXB0YWNp77+9biBkZSBlc3RlIGRvY3VtZW50byB5IGhhc3RhIGxhIGZlY2hhIHF1ZSBpbmRpcXVlIC4KCkVsIGF1dG9yIGFzZWd1cmEgcXVlIGxhIG9icmEgbm8gaW5mcmlnZSBuaW5n77+9biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdO+/vSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyB5IHJlY29ub2NpZG8gZW4gZWwgdGV4dG8gbyBjb250ZW5pZG8gZGVsIGRvY3VtZW50byBkZXBvc2l0YWRvIGVuIGVsIFJlcG9zaXRvcmlvLgoKRW4gb2JyYXMgZGUgYXV0b3Lvv71hIG3vv71sdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDvv71zdGUgZWwg77+9bmljbyByZXNwb25zYWJsZSBmcmVudGUgYSBjdWFscXVpZXIgdGlwbyBkZSByZWNsYW1hY2nvv71uIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLvv70gcmVzcG9uc2FibGUgZGVsIGNvbnRlbmlkbyBkZSBsb3MgZG9jdW1lbnRvcyBxdWUgZGVwb3NpdGEuIExhIFVERUxBUiBubyBzZXLvv70gcmVzcG9uc2FibGUgcG9yIGxhcyBldmVudHVhbGVzIHZpb2xhY2lvbmVzIGFsIGRlcmVjaG8gZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIHF1ZSBwdWVkYSBpbmN1cnJpciBlbCBhdXRvci4KCkFudGUgY3VhbHF1aWVyIGRlbnVuY2lhIGRlIHZpb2xhY2nvv71uIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFy77+9IHRvZGFzIGxhcyBtZWRpZGFzIG5lY2VzYXJpYXMgcGFyYSBldml0YXIgbGEgY29udGludWFjae+/vW4gZGUgZGljaGEgaW5mcmFjY2nvv71uLCBsYXMgcXVlIHBvZHLvv71uIGluY2x1aXIgZWwgcmV0aXJvIGRlbCBhY2Nlc28gYSBsb3MgY29udGVuaWRvcyB5L28gbWV0YWRhdG9zIGRlbCBkb2N1bWVudG8gcmVzcGVjdGl2by4KCkxhIG9icmEgc2UgcG9uZHLvv70gYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28gYSB0cmF277+9cyBkZSBsYXMgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMsIGVsIGF1dG9yIHBvZHLvv70gc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjae+/vW4gKENDIC0gQnkpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgc2llbXByZSBxdWUgc2UgcmVjb25vemNhIGFsIGF1dG9yLgoKQXRyaWJ1Y2nvv71uIO+/vSBDb21wYXJ0aXIgSWd1YWwgKENDIC0gQnktU0EpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgcGVybyBsYSBkaXN0cmlidWNp77+9biBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTvv71udGljYSBhIGxhIGRlIGxhIG9icmEgb3JpZ2luYWwsIHJlY29ub2NpZW5kbyBhIGxvcyBhdXRvcmVzLgoKQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwgKENDIC0gQnktTkMpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBzaWVtcHJlIHkgY3VhbmRvIGVzb3MgdXNvcyBubyB0ZW5nYW4gZmluZXMgY29tZXJjaWFsZXMsIHJlY29ub2NpZW5kbyBhbCBhdXRvci4KCkF0cmlidWNp77+9biDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNp77+9biDvv70gTm8gQ29tZXJjaWFsIO+/vSBDb21wYXJ0aXIgSWd1YWwgKENDIO+/vSBCeS1OQy1TQSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIHNpZW1wcmUgeSBjdWFuZG8gZXNvcyB1c29zIG5vIHRlbmdhbiBmaW5lcyBjb21lcmNpYWxlcyB5IGxhIGRpc3RyaWJ1Y2nvv71uIGRlIGxhcyBvYnJhcyBkZXJpdmFkYXMgc2UgaGFnYSBtZWRpYW50ZSBsaWNlbmNpYSBpZO+/vW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjae+/vW4g77+9IE5vIENvbWVyY2lhbCDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1OQy1ORCk6IFBlcm1pdGUgdXNhciBsYSBvYnJhLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMgeSBubyBzZSBwZXJtaXRlIHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkxvcyB1c29zIHByZXZpc3RvcyBlbiBsYXMgbGljZW5jaWFzIGluY2x1eWVuIGxhIGVuYWplbmFjae+/vW4sIHJlcHJvZHVjY2nvv71uLCBjb211bmljYWNp77+9biwgcHVibGljYWNp77+9biwgZGlzdHJpYnVjae+/vW4geSBwdWVzdGEgYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28uIExhIGNyZWFjae+/vW4gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nvv71uLCB0cmFkdWNjae+/vW4geSBlbCByZW1peC4KCkN1YW5kbyBzZSBzZWxlY2Npb25lIHVuYSBsaWNlbmNpYSBxdWUgaGFiaWxpdGUgdXNvcyBjb21lcmNpYWxlcywgZWwgZGVw77+9c2l0byBkZWJlcu+/vSBzZXIgYWNvbXBh77+9YWRvIGRlbCBhdmFsIGRlbCBqZXJhcmNhIG3vv714aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCgoKCgoKCgoKUniversidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-08-13T03:01:05.700602COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Outliers in biometrics : an a-contrario approach Di Martino, Luis Procesamiento de Señales |
status_str | acceptedVersion |
title | Outliers in biometrics : an a-contrario approach |
title_full | Outliers in biometrics : an a-contrario approach |
title_fullStr | Outliers in biometrics : an a-contrario approach |
title_full_unstemmed | Outliers in biometrics : an a-contrario approach |
title_short | Outliers in biometrics : an a-contrario approach |
title_sort | Outliers in biometrics : an a-contrario approach |
topic | Procesamiento de Señales |
url | http://hdl.handle.net/20.500.12008/20169 |