Outliers in biometrics : an a-contrario approach

Di Martino, Luis

Supervisor(es): Lecumberry, Federico - Fernández, Alicia

Resumen:

This thesis addresses the problems of biometrics : how a persons identity could be determined or validated by using some physical or behavioral characteristic. Biometry is one of the main research topics in the field of pattern recognition due to its impact on several applications in security and human-machine interaction environments. Several works focus on the improvement of the features extracted in the particular system being presented (face, fingerprint or speech recognition among others), or the metrics used to compare such features, in this work the classification stage is particularly tackled.A statistical approach is presented based on a well-known a-contrario validation strategy. Techniques based on such framework have been widely used in the fields of image processing and computer vision for the detection and matching of visual features. In this work, the method ability to detect outliers/inliers is exploited to detect when two compared biometric samples correspond to the same person. This method is adapted and applied to each of the usual biometric tasks.First, it is applied to the task of biometric verification, modeling it as a two- class classification problem. The introduced strategy was validated using different datasets and compared against other state-of-the-art commonly used classification methods. Findings of this work have been presented at the 2014 International Conference on Pattern Recognition Applications and Methods (ICPRAM-2014), by applying the framework to the face recognition problem in particular. An extension of the conference article has been published as a journal article. In this thesis, the presented strategy is reviewed with an experimental evaluation done in several bigger datasets.Secondly, the a-contrario framework is applied to the identification task. The method is used to validate the confidence of an identification system outputs. What is normally called in the literature as System Response Reliability (SRR). Such problem has been thoroughly studied lately, the key advantages of using such control are analyzed and discussed. The obtained performance is validated on multiple datasets by comparing with other state-of-the-art approaches. This work has been presented on the 2016 International Conference of the Biometrics Special Interest Group (BIOSIG-2016).Finally, the framework is applied to biometric fusion. The key differences in such scenario and the corresponding proposed framework adaptations are analyzed. The proposed technique is evaluated in both artificially generated as real-scenario datasets. The performance is compared against other state-of-the-art statistically fusion strategies


Detalles Bibliográficos
2017
Procesamiento de Señales
Español
Universidad de la República
COLIBRI
http://hdl.handle.net/20.500.12008/20169
Acceso abierto
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)
_version_ 1807522998991716352
author Di Martino, Luis
author_facet Di Martino, Luis
author_role author
bitstream.checksum.fl_str_mv 7f2e2c17ef6585de66da58d1bfa8b5e1
9833653f73f7853880c94a6fead477b1
4afdbb8c545fd630ea7db775da747b2f
9da0b6dfac957114c6a7714714b86306
4093ff7000f6ade2d43fda4992806e8d
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/20169/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/20169/2/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/20169/3/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/20169/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/20169/1/Di+17.pdf
collection COLIBRI
dc.creator.advisor.none.fl_str_mv Lecumberry, Federico
Fernández, Alicia
dc.creator.none.fl_str_mv Di Martino, Luis
dc.date.accessioned.none.fl_str_mv 2019-02-21T20:55:37Z
dc.date.available.none.fl_str_mv 2019-02-21T20:55:37Z
dc.date.issued.es.fl_str_mv 2017
dc.date.submitted.es.fl_str_mv 20190221
dc.description.abstract.none.fl_txt_mv This thesis addresses the problems of biometrics : how a persons identity could be determined or validated by using some physical or behavioral characteristic. Biometry is one of the main research topics in the field of pattern recognition due to its impact on several applications in security and human-machine interaction environments. Several works focus on the improvement of the features extracted in the particular system being presented (face, fingerprint or speech recognition among others), or the metrics used to compare such features, in this work the classification stage is particularly tackled.A statistical approach is presented based on a well-known a-contrario validation strategy. Techniques based on such framework have been widely used in the fields of image processing and computer vision for the detection and matching of visual features. In this work, the method ability to detect outliers/inliers is exploited to detect when two compared biometric samples correspond to the same person. This method is adapted and applied to each of the usual biometric tasks.First, it is applied to the task of biometric verification, modeling it as a two- class classification problem. The introduced strategy was validated using different datasets and compared against other state-of-the-art commonly used classification methods. Findings of this work have been presented at the 2014 International Conference on Pattern Recognition Applications and Methods (ICPRAM-2014), by applying the framework to the face recognition problem in particular. An extension of the conference article has been published as a journal article. In this thesis, the presented strategy is reviewed with an experimental evaluation done in several bigger datasets.Secondly, the a-contrario framework is applied to the identification task. The method is used to validate the confidence of an identification system outputs. What is normally called in the literature as System Response Reliability (SRR). Such problem has been thoroughly studied lately, the key advantages of using such control are analyzed and discussed. The obtained performance is validated on multiple datasets by comparing with other state-of-the-art approaches. This work has been presented on the 2016 International Conference of the Biometrics Special Interest Group (BIOSIG-2016).Finally, the framework is applied to biometric fusion. The key differences in such scenario and the corresponding proposed framework adaptations are analyzed. The proposed technique is evaluated in both artificially generated as real-scenario datasets. The performance is compared against other state-of-the-art statistically fusion strategies
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv DI MARTINO, L. "Outliers in biometrics : an a-contrario approach". Tesis de maestría, Universidad de la República (Uruguay). Facultad de Ingeniería, 2017.
dc.identifier.uri.none.fl_str_mv http://hdl.handle.net/20.500.12008/20169
dc.language.iso.none.fl_str_mv es
spa
dc.publisher.es.fl_str_mv UR. FING
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.other.es.fl_str_mv Procesamiento de Señales
dc.title.none.fl_str_mv Outliers in biometrics : an a-contrario approach
dc.type.es.fl_str_mv Tesis de maestría
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description This thesis addresses the problems of biometrics : how a persons identity could be determined or validated by using some physical or behavioral characteristic. Biometry is one of the main research topics in the field of pattern recognition due to its impact on several applications in security and human-machine interaction environments. Several works focus on the improvement of the features extracted in the particular system being presented (face, fingerprint or speech recognition among others), or the metrics used to compare such features, in this work the classification stage is particularly tackled.A statistical approach is presented based on a well-known a-contrario validation strategy. Techniques based on such framework have been widely used in the fields of image processing and computer vision for the detection and matching of visual features. In this work, the method ability to detect outliers/inliers is exploited to detect when two compared biometric samples correspond to the same person. This method is adapted and applied to each of the usual biometric tasks.First, it is applied to the task of biometric verification, modeling it as a two- class classification problem. The introduced strategy was validated using different datasets and compared against other state-of-the-art commonly used classification methods. Findings of this work have been presented at the 2014 International Conference on Pattern Recognition Applications and Methods (ICPRAM-2014), by applying the framework to the face recognition problem in particular. An extension of the conference article has been published as a journal article. In this thesis, the presented strategy is reviewed with an experimental evaluation done in several bigger datasets.Secondly, the a-contrario framework is applied to the identification task. The method is used to validate the confidence of an identification system outputs. What is normally called in the literature as System Response Reliability (SRR). Such problem has been thoroughly studied lately, the key advantages of using such control are analyzed and discussed. The obtained performance is validated on multiple datasets by comparing with other state-of-the-art approaches. This work has been presented on the 2016 International Conference of the Biometrics Special Interest Group (BIOSIG-2016).Finally, the framework is applied to biometric fusion. The key differences in such scenario and the corresponding proposed framework adaptations are analyzed. The proposed technique is evaluated in both artificially generated as real-scenario datasets. The performance is compared against other state-of-the-art statistically fusion strategies
eu_rights_str_mv openAccess
format masterThesis
id COLIBRI_e021c97c052fb7f60128d6e218352897
identifier_str_mv DI MARTINO, L. "Outliers in biometrics : an a-contrario approach". Tesis de maestría, Universidad de la República (Uruguay). Facultad de Ingeniería, 2017.
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/20169
publishDate 2017
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)
spelling 2019-02-21T20:55:37Z2019-02-21T20:55:37Z201720190221DI MARTINO, L. "Outliers in biometrics : an a-contrario approach". Tesis de maestría, Universidad de la República (Uruguay). Facultad de Ingeniería, 2017.http://hdl.handle.net/20.500.12008/20169This thesis addresses the problems of biometrics : how a persons identity could be determined or validated by using some physical or behavioral characteristic. Biometry is one of the main research topics in the field of pattern recognition due to its impact on several applications in security and human-machine interaction environments. Several works focus on the improvement of the features extracted in the particular system being presented (face, fingerprint or speech recognition among others), or the metrics used to compare such features, in this work the classification stage is particularly tackled.A statistical approach is presented based on a well-known a-contrario validation strategy. Techniques based on such framework have been widely used in the fields of image processing and computer vision for the detection and matching of visual features. In this work, the method ability to detect outliers/inliers is exploited to detect when two compared biometric samples correspond to the same person. This method is adapted and applied to each of the usual biometric tasks.First, it is applied to the task of biometric verification, modeling it as a two- class classification problem. The introduced strategy was validated using different datasets and compared against other state-of-the-art commonly used classification methods. Findings of this work have been presented at the 2014 International Conference on Pattern Recognition Applications and Methods (ICPRAM-2014), by applying the framework to the face recognition problem in particular. An extension of the conference article has been published as a journal article. In this thesis, the presented strategy is reviewed with an experimental evaluation done in several bigger datasets.Secondly, the a-contrario framework is applied to the identification task. The method is used to validate the confidence of an identification system outputs. What is normally called in the literature as System Response Reliability (SRR). Such problem has been thoroughly studied lately, the key advantages of using such control are analyzed and discussed. The obtained performance is validated on multiple datasets by comparing with other state-of-the-art approaches. This work has been presented on the 2016 International Conference of the Biometrics Special Interest Group (BIOSIG-2016).Finally, the framework is applied to biometric fusion. The key differences in such scenario and the corresponding proposed framework adaptations are analyzed. The proposed technique is evaluated in both artificially generated as real-scenario datasets. The performance is compared against other state-of-the-art statistically fusion strategiesMade available in DSpace on 2019-02-21T20:55:37Z (GMT). No. of bitstreams: 5 Di 17.pdf: 3731734 bytes, checksum: 4093ff7000f6ade2d43fda4992806e8d (MD5) license_text: 21936 bytes, checksum: 9833653f73f7853880c94a6fead477b1 (MD5) license_url: 49 bytes, checksum: 4afdbb8c545fd630ea7db775da747b2f (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) license.txt: 4194 bytes, checksum: 7f2e2c17ef6585de66da58d1bfa8b5e1 (MD5) Previous issue date: 2017application/pdfesspaUR. FINGLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)Procesamiento de SeñalesOutliers in biometrics : an a-contrario approachTesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaDi Martino, LuisLecumberry, FedericoFernández, AliciaUniversidad de la República (Uruguay). Facultad de IngenieríaMagíster en Ingeniería EléctricaProcesamiento de SeñalesTratamiento de ImágenesLICENSElicense.txttext/plain4194http://localhost:8080/xmlui/bitstream/20.500.12008/20169/5/license.txt7f2e2c17ef6585de66da58d1bfa8b5e1MD55CC-LICENSElicense_textapplication/octet-stream21936http://localhost:8080/xmlui/bitstream/20.500.12008/20169/2/license_text9833653f73f7853880c94a6fead477b1MD52license_urlapplication/octet-stream49http://localhost:8080/xmlui/bitstream/20.500.12008/20169/3/license_url4afdbb8c545fd630ea7db775da747b2fMD53license_rdfapplication/octet-stream23148http://localhost:8080/xmlui/bitstream/20.500.12008/20169/4/license_rdf9da0b6dfac957114c6a7714714b86306MD54ORIGINALDi 17.pdfapplication/pdf3731734http://localhost:8080/xmlui/bitstream/20.500.12008/20169/1/Di+17.pdf4093ff7000f6ade2d43fda4992806e8dMD5120.500.12008/201692024-07-26 17:16:38.491oai:colibri.udelar.edu.uy:20.500.12008/20169VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDvv71ibGljYS4gKFJlcy4gTu+/vSA5MSBkZSBDLkQuQy4gZGUgOC9JSUkvMTk5NCDvv70gRC5PLiA3L0lWLzE5OTQpIHkgIHBvciBsYSBPcmRlbmFuemEgZGVsIFJlcG9zaXRvcmlvIEFiaWVydG8gZGUgbGEgVW5pdmVyc2lkYWQgZGUgbGEgUmVw77+9YmxpY2EgKFJlcy4gTu+/vSAxNiBkZSBDLkQuQy4gZGUgMDcvMTAvMjAxNCkuIAoKQWNlcHRhbmRvIGVsIGF1dG9yIGVzdG9zIHTvv71ybWlub3MgeSBjb25kaWNpb25lcyBkZSBkZXDvv71zaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcO+/vWJsaWNhIHByb2NlZGVy77+9IGE6ICAKCmEpIGFyY2hpdmFyIG3vv71zIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nvv71uCmIpIGNvbnZlcnRpciBsYSBvYnJhIGEgb3Ryb3MgZm9ybWF0b3Mgc2kgZnVlcmEgbmVjZXNhcmlvICBwYXJhIGZhY2lsaXRhciBzdSBwcmVzZXJ2YWNp77+9biB5IGFjY2VzaWJpbGlkYWQgc2luIGFsdGVyYXIgc3UgY29udGVuaWRvLgpjKSByZWFsaXphciBsYSBjb211bmljYWNp77+9biBw77+9YmxpY2EgeSBkaXNwb25lciBlbCBhY2Nlc28gbGlicmUgeSBncmF0dWl0byBhIHRyYXbvv71zIGRlIEludGVybmV0IG1lZGlhbnRlIGxhIHB1YmxpY2Fjae+/vW4gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcu+/vSBzb2xpY2l0YXIgdW4gcGVy77+9b2RvIGRlIGVtYmFyZ28gc29icmUgbGEgZGlzcG9uaWJpbGlkYWQgcO+/vWJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFy77+9IGEgcGFydGlyIGRlIGxhIGFjZXB0YWNp77+9biBkZSBlc3RlIGRvY3VtZW50byB5IGhhc3RhIGxhIGZlY2hhIHF1ZSBpbmRpcXVlIC4KCkVsIGF1dG9yIGFzZWd1cmEgcXVlIGxhIG9icmEgbm8gaW5mcmlnZSBuaW5n77+9biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdO+/vSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyB5IHJlY29ub2NpZG8gZW4gZWwgdGV4dG8gbyBjb250ZW5pZG8gZGVsIGRvY3VtZW50byBkZXBvc2l0YWRvIGVuIGVsIFJlcG9zaXRvcmlvLgoKRW4gb2JyYXMgZGUgYXV0b3Lvv71hIG3vv71sdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDvv71zdGUgZWwg77+9bmljbyByZXNwb25zYWJsZSBmcmVudGUgYSBjdWFscXVpZXIgdGlwbyBkZSByZWNsYW1hY2nvv71uIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLvv70gcmVzcG9uc2FibGUgZGVsIGNvbnRlbmlkbyBkZSBsb3MgZG9jdW1lbnRvcyBxdWUgZGVwb3NpdGEuIExhIFVERUxBUiBubyBzZXLvv70gcmVzcG9uc2FibGUgcG9yIGxhcyBldmVudHVhbGVzIHZpb2xhY2lvbmVzIGFsIGRlcmVjaG8gZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIHF1ZSBwdWVkYSBpbmN1cnJpciBlbCBhdXRvci4KCkFudGUgY3VhbHF1aWVyIGRlbnVuY2lhIGRlIHZpb2xhY2nvv71uIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFy77+9IHRvZGFzIGxhcyBtZWRpZGFzIG5lY2VzYXJpYXMgcGFyYSBldml0YXIgbGEgY29udGludWFjae+/vW4gZGUgZGljaGEgaW5mcmFjY2nvv71uLCBsYXMgcXVlIHBvZHLvv71uIGluY2x1aXIgZWwgcmV0aXJvIGRlbCBhY2Nlc28gYSBsb3MgY29udGVuaWRvcyB5L28gbWV0YWRhdG9zIGRlbCBkb2N1bWVudG8gcmVzcGVjdGl2by4KCkxhIG9icmEgc2UgcG9uZHLvv70gYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28gYSB0cmF277+9cyBkZSBsYXMgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMsIGVsIGF1dG9yIHBvZHLvv70gc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjae+/vW4gKENDIC0gQnkpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgc2llbXByZSBxdWUgc2UgcmVjb25vemNhIGFsIGF1dG9yLgoKQXRyaWJ1Y2nvv71uIO+/vSBDb21wYXJ0aXIgSWd1YWwgKENDIC0gQnktU0EpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgcGVybyBsYSBkaXN0cmlidWNp77+9biBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTvv71udGljYSBhIGxhIGRlIGxhIG9icmEgb3JpZ2luYWwsIHJlY29ub2NpZW5kbyBhIGxvcyBhdXRvcmVzLgoKQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwgKENDIC0gQnktTkMpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBzaWVtcHJlIHkgY3VhbmRvIGVzb3MgdXNvcyBubyB0ZW5nYW4gZmluZXMgY29tZXJjaWFsZXMsIHJlY29ub2NpZW5kbyBhbCBhdXRvci4KCkF0cmlidWNp77+9biDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNp77+9biDvv70gTm8gQ29tZXJjaWFsIO+/vSBDb21wYXJ0aXIgSWd1YWwgKENDIO+/vSBCeS1OQy1TQSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIHNpZW1wcmUgeSBjdWFuZG8gZXNvcyB1c29zIG5vIHRlbmdhbiBmaW5lcyBjb21lcmNpYWxlcyB5IGxhIGRpc3RyaWJ1Y2nvv71uIGRlIGxhcyBvYnJhcyBkZXJpdmFkYXMgc2UgaGFnYSBtZWRpYW50ZSBsaWNlbmNpYSBpZO+/vW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjae+/vW4g77+9IE5vIENvbWVyY2lhbCDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1OQy1ORCk6IFBlcm1pdGUgdXNhciBsYSBvYnJhLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMgeSBubyBzZSBwZXJtaXRlIHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkxvcyB1c29zIHByZXZpc3RvcyBlbiBsYXMgbGljZW5jaWFzIGluY2x1eWVuIGxhIGVuYWplbmFjae+/vW4sIHJlcHJvZHVjY2nvv71uLCBjb211bmljYWNp77+9biwgcHVibGljYWNp77+9biwgZGlzdHJpYnVjae+/vW4geSBwdWVzdGEgYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28uIExhIGNyZWFjae+/vW4gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nvv71uLCB0cmFkdWNjae+/vW4geSBlbCByZW1peC4KCkN1YW5kbyBzZSBzZWxlY2Npb25lIHVuYSBsaWNlbmNpYSBxdWUgaGFiaWxpdGUgdXNvcyBjb21lcmNpYWxlcywgZWwgZGVw77+9c2l0byBkZWJlcu+/vSBzZXIgYWNvbXBh77+9YWRvIGRlbCBhdmFsIGRlbCBqZXJhcmNhIG3vv714aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCgoKCgoKCgoKUniversidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-08-13T03:01:05.700602COLIBRI - Universidad de la Repúblicafalse
spellingShingle Outliers in biometrics : an a-contrario approach
Di Martino, Luis
Procesamiento de Señales
status_str acceptedVersion
title Outliers in biometrics : an a-contrario approach
title_full Outliers in biometrics : an a-contrario approach
title_fullStr Outliers in biometrics : an a-contrario approach
title_full_unstemmed Outliers in biometrics : an a-contrario approach
title_short Outliers in biometrics : an a-contrario approach
title_sort Outliers in biometrics : an a-contrario approach
topic Procesamiento de Señales
url http://hdl.handle.net/20.500.12008/20169