Procesamiento automático de imágenes para la detección de daños en palas de aerogeneradores.
Resumen:
Este proyecto de grado aborda la detección de daños superficiales en las palas de aerogeneradores. Comienza con un resumen del marco teórico que abarca conceptos básicos sobre el aprendizaje automático, la noción de redes neuronales y específicamente convolucionales, junto con los componentes más importantes de su arquitectura. A su vez, se cubren nociones esenciales relacionadas con la detección de objetos, medidas de desempeño, funciones de costo, optimizadores y un análisis de los modelos utilizados para este proyecto. Posteriormente, se realiza un análisis de la literatura que detalla los métodos empleados por estudios similares y sus resultados correspondientes. Primero se identifica el propósito y protocolo a utilizar. Luego se proporciona un listado de los artículos encontrados y su nivel de relevancia con el proyecto en cuestión. Finalmente, se analizan los artículos y se proporciona en este informe un resumen de la información encontrada relacionada con los conjuntos de datos utilizados, clasificación de los daños, preprocesamiento de los datos, modelos, métricas y resultados obtenidos. También se contribuye con una tabla de la información más relevante encontrada para cada uno de los artículos. Luego se describe en una nueva sección las experimentaciones llevadas a cabo con diversos modelos de aprendizaje automático, incluyendo técnicas de aumento de datos y ajuste de hiperparámetros. Se comienza detallando la plataforma de ejecución y los conjuntos de datos utilizados. Luego se separan las experimentaciones en tres fases que dependen del conjunto de datos, el modelo a entrenar y las experimentaciones a realizar. La primera es una comparación de todos los modelos a evaluar, la segunda una comparación de los dos mejores de la fase anterior y la tercera la optimización del modelo YOLOv8n concluido como mejor.
2024 | |
Detección de objetos Aprendizaje automático Redes neuronales convolucionales Daños en palas de aerogeneradores Visión por computadora |
|
Español | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/43671 | |
Acceso abierto | |
Licencia Creative Commons Atribución (CC - By 4.0) |
_version_ | 1807523230515200000 |
---|---|
author | Arroyo, Jessica |
author2 | Borba, Martín Casarotti, Francisco |
author2_role | author author |
author_facet | Arroyo, Jessica Borba, Martín Casarotti, Francisco |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a0ebbeafb9d2ec7cbb19d7137ebc392c 8010f418ede1186e294ac5448996bd7e 71ed42ef0a0b648670f707320be37b90 7df726661c0119b39731cf58120cb4aa |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/43671/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/43671/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/43671/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/43671/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/43671/1/ABC24.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Arroyo Jessica, Universidad de la República (Uruguay). Facultad de Ingeniería. Borba Martín, Universidad de la República (Uruguay). Facultad de Ingeniería. Casarotti Francisco, Universidad de la República (Uruguay). Facultad de Ingeniería. |
dc.creator.none.fl_str_mv | Arroyo, Jessica Borba, Martín Casarotti, Francisco |
dc.date.accessioned.none.fl_str_mv | 2024-04-29T14:54:32Z |
dc.date.available.none.fl_str_mv | 2024-04-29T14:54:32Z |
dc.date.issued.none.fl_str_mv | 2024 |
dc.description.abstract.none.fl_txt_mv | Este proyecto de grado aborda la detección de daños superficiales en las palas de aerogeneradores. Comienza con un resumen del marco teórico que abarca conceptos básicos sobre el aprendizaje automático, la noción de redes neuronales y específicamente convolucionales, junto con los componentes más importantes de su arquitectura. A su vez, se cubren nociones esenciales relacionadas con la detección de objetos, medidas de desempeño, funciones de costo, optimizadores y un análisis de los modelos utilizados para este proyecto. Posteriormente, se realiza un análisis de la literatura que detalla los métodos empleados por estudios similares y sus resultados correspondientes. Primero se identifica el propósito y protocolo a utilizar. Luego se proporciona un listado de los artículos encontrados y su nivel de relevancia con el proyecto en cuestión. Finalmente, se analizan los artículos y se proporciona en este informe un resumen de la información encontrada relacionada con los conjuntos de datos utilizados, clasificación de los daños, preprocesamiento de los datos, modelos, métricas y resultados obtenidos. También se contribuye con una tabla de la información más relevante encontrada para cada uno de los artículos. Luego se describe en una nueva sección las experimentaciones llevadas a cabo con diversos modelos de aprendizaje automático, incluyendo técnicas de aumento de datos y ajuste de hiperparámetros. Se comienza detallando la plataforma de ejecución y los conjuntos de datos utilizados. Luego se separan las experimentaciones en tres fases que dependen del conjunto de datos, el modelo a entrenar y las experimentaciones a realizar. La primera es una comparación de todos los modelos a evaluar, la segunda una comparación de los dos mejores de la fase anterior y la tercera la optimización del modelo YOLOv8n concluido como mejor. |
dc.description.es.fl_txt_mv | Títulos obtenidos: Jessica Arroyo, Ingeniera en Sistemas de Comunicación; Martín Borba, Ingeniero en Computación, Francisco Casarotti, Ingeniero en Computación. |
dc.format.extent.es.fl_str_mv | 91 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Arroyo, J., Borba, M. y Casarotti, F. Procesamiento automático de imágenes para la detección de daños en palas de aerogeneradores [en línea] Tesis de grado. Montevideo: Udelar, FI. INCO : IIE, 2024. |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/43671 |
dc.language.iso.none.fl_str_mv | es spa |
dc.publisher.es.fl_str_mv | Udelar. FI. |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución (CC - By 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Detección de objetos Aprendizaje automático Redes neuronales convolucionales Daños en palas de aerogeneradores Visión por computadora |
dc.title.none.fl_str_mv | Procesamiento automático de imágenes para la detección de daños en palas de aerogeneradores. |
dc.type.es.fl_str_mv | Tesis de grado |
dc.type.none.fl_str_mv | info:eu-repo/semantics/bachelorThesis |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/acceptedVersion |
description | Títulos obtenidos: Jessica Arroyo, Ingeniera en Sistemas de Comunicación; Martín Borba, Ingeniero en Computación, Francisco Casarotti, Ingeniero en Computación. |
eu_rights_str_mv | openAccess |
format | bachelorThesis |
id | COLIBRI_deb0faaf4c83b40f293687312f753675 |
identifier_str_mv | Arroyo, J., Borba, M. y Casarotti, F. Procesamiento automático de imágenes para la detección de daños en palas de aerogeneradores [en línea] Tesis de grado. Montevideo: Udelar, FI. INCO : IIE, 2024. |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | spa |
language_invalid_str_mv | es |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/43671 |
publishDate | 2024 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución (CC - By 4.0) |
spelling | Arroyo Jessica, Universidad de la República (Uruguay). Facultad de Ingeniería.Borba Martín, Universidad de la República (Uruguay). Facultad de Ingeniería.Casarotti Francisco, Universidad de la República (Uruguay). Facultad de Ingeniería.2024-04-29T14:54:32Z2024-04-29T14:54:32Z2024Arroyo, J., Borba, M. y Casarotti, F. Procesamiento automático de imágenes para la detección de daños en palas de aerogeneradores [en línea] Tesis de grado. Montevideo: Udelar, FI. INCO : IIE, 2024.https://hdl.handle.net/20.500.12008/43671Títulos obtenidos: Jessica Arroyo, Ingeniera en Sistemas de Comunicación; Martín Borba, Ingeniero en Computación, Francisco Casarotti, Ingeniero en Computación.Este proyecto de grado aborda la detección de daños superficiales en las palas de aerogeneradores. Comienza con un resumen del marco teórico que abarca conceptos básicos sobre el aprendizaje automático, la noción de redes neuronales y específicamente convolucionales, junto con los componentes más importantes de su arquitectura. A su vez, se cubren nociones esenciales relacionadas con la detección de objetos, medidas de desempeño, funciones de costo, optimizadores y un análisis de los modelos utilizados para este proyecto. Posteriormente, se realiza un análisis de la literatura que detalla los métodos empleados por estudios similares y sus resultados correspondientes. Primero se identifica el propósito y protocolo a utilizar. Luego se proporciona un listado de los artículos encontrados y su nivel de relevancia con el proyecto en cuestión. Finalmente, se analizan los artículos y se proporciona en este informe un resumen de la información encontrada relacionada con los conjuntos de datos utilizados, clasificación de los daños, preprocesamiento de los datos, modelos, métricas y resultados obtenidos. También se contribuye con una tabla de la información más relevante encontrada para cada uno de los artículos. Luego se describe en una nueva sección las experimentaciones llevadas a cabo con diversos modelos de aprendizaje automático, incluyendo técnicas de aumento de datos y ajuste de hiperparámetros. Se comienza detallando la plataforma de ejecución y los conjuntos de datos utilizados. Luego se separan las experimentaciones en tres fases que dependen del conjunto de datos, el modelo a entrenar y las experimentaciones a realizar. La primera es una comparación de todos los modelos a evaluar, la segunda una comparación de los dos mejores de la fase anterior y la tercera la optimización del modelo YOLOv8n concluido como mejor.Submitted by Berón Cecilia (cberon@fing.edu.uy) on 2024-04-10T17:23:08Z No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) ABC24.pdf: 1579554 bytes, checksum: 7df726661c0119b39731cf58120cb4aa (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2024-04-29T14:29:49Z (GMT) No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) ABC24.pdf: 1579554 bytes, checksum: 7df726661c0119b39731cf58120cb4aa (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2024-04-29T14:54:32Z (GMT). No. of bitstreams: 2 license_rdf: 24251 bytes, checksum: 71ed42ef0a0b648670f707320be37b90 (MD5) ABC24.pdf: 1579554 bytes, checksum: 7df726661c0119b39731cf58120cb4aa (MD5) Previous issue date: 202491 p.application/pdfesspaUdelar. FI.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución (CC - By 4.0)Detección de objetosAprendizaje automáticoRedes neuronales convolucionalesDaños en palas de aerogeneradoresVisión por computadoraProcesamiento automático de imágenes para la detección de daños en palas de aerogeneradores.Tesis de gradoinfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaArroyo, JessicaBorba, MartínCasarotti, FranciscoUniversidad de la República (Uruguay). Facultad de IngenieríaIngeniero en ComputaciónIngeniero en Sistemas de Comunicación.LICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/43671/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-844http://localhost:8080/xmlui/bitstream/20.500.12008/43671/2/license_urla0ebbeafb9d2ec7cbb19d7137ebc392cMD52license_textlicense_texttext/html; charset=utf-820277http://localhost:8080/xmlui/bitstream/20.500.12008/43671/3/license_text8010f418ede1186e294ac5448996bd7eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-824251http://localhost:8080/xmlui/bitstream/20.500.12008/43671/4/license_rdf71ed42ef0a0b648670f707320be37b90MD54ORIGINALABC24.pdfABC24.pdfapplication/pdf1579554http://localhost:8080/xmlui/bitstream/20.500.12008/43671/1/ABC24.pdf7df726661c0119b39731cf58120cb4aaMD5120.500.12008/436712024-05-02 12:30:02.208oai:colibri.udelar.edu.uy:20.500.12008/43671VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:46:31.045178COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Procesamiento automático de imágenes para la detección de daños en palas de aerogeneradores. Arroyo, Jessica Detección de objetos Aprendizaje automático Redes neuronales convolucionales Daños en palas de aerogeneradores Visión por computadora |
status_str | acceptedVersion |
title | Procesamiento automático de imágenes para la detección de daños en palas de aerogeneradores. |
title_full | Procesamiento automático de imágenes para la detección de daños en palas de aerogeneradores. |
title_fullStr | Procesamiento automático de imágenes para la detección de daños en palas de aerogeneradores. |
title_full_unstemmed | Procesamiento automático de imágenes para la detección de daños en palas de aerogeneradores. |
title_short | Procesamiento automático de imágenes para la detección de daños en palas de aerogeneradores. |
title_sort | Procesamiento automático de imágenes para la detección de daños en palas de aerogeneradores. |
topic | Detección de objetos Aprendizaje automático Redes neuronales convolucionales Daños en palas de aerogeneradores Visión por computadora |
url | https://hdl.handle.net/20.500.12008/43671 |