Stabiliy of the double-cusp spacetimes and long-time geometrizations
Resumen:
Since the early years of General Relativity, understanding the long-time behavior of the cosmological solutions of Einstein's vacuum equations has been a fundamental yet challenging task. Solutions with global symmetries, or perturbations thereof, have been extensively studied and are reasonably understood. On the other hand, thanks to the work of Fischer-Moncrief and M. Anderson, it is known that there is a tight relation between the future evolution of solutions and the Thurston decomposition of the spatial 3-manifold. Consequently, cosmological spacetimes developing a future asymptotic symmetry should represent only a negligible part of a much larger yet unexplored solution landscape. In this work, we revisit a program initiated by the second named author, aimed at constructing a new type of cosmological solution first posed by M. Anderson, where (at the right scale) two hyperbolic manifolds with a cusp separate from each other through a thin torus neck. Specifically, we prove that the so-called double-cusp solution, which models the torus neck, is stable under S1×S1 - symmetry-preserving perturbations. The proof, which has interest on its own, reduces to proving the stability of a geodesic segment as a wave map into the hyperbolic plane and partially relates to the work of Sideris on wave maps and the work of Ringström on the future asymptotics of Gowdy spacetimes.
2023 | |
Differential geometry Hyperbolic spaces |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/43928 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807522809848528896 |
---|---|
author | Bellati Barthés, Alejandro Gustavo |
author2 | Reiris Ithurralde, Martín |
author2_role | author |
author_facet | Bellati Barthés, Alejandro Gustavo Reiris Ithurralde, Martín |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a006180e3f5b2ad0b88185d14284c0e0 6d6e490f4468ecf5055a84af48d45653 489f03e71d39068f329bdec8798bce58 2f17eccab0c5a5b8238f76e00b279da8 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/43928/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/43928/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/43928/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/43928/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/43928/1/2311.17180v1.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Bellati Barthés Alejandro Gustavo, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemáticas. Reiris Ithurralde Martín, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemáticas. |
dc.creator.none.fl_str_mv | Bellati Barthés, Alejandro Gustavo Reiris Ithurralde, Martín |
dc.date.accessioned.none.fl_str_mv | 2024-05-28T17:23:20Z |
dc.date.available.none.fl_str_mv | 2024-05-28T17:23:20Z |
dc.date.issued.none.fl_str_mv | 2023 |
dc.description.abstract.none.fl_txt_mv | Since the early years of General Relativity, understanding the long-time behavior of the cosmological solutions of Einstein's vacuum equations has been a fundamental yet challenging task. Solutions with global symmetries, or perturbations thereof, have been extensively studied and are reasonably understood. On the other hand, thanks to the work of Fischer-Moncrief and M. Anderson, it is known that there is a tight relation between the future evolution of solutions and the Thurston decomposition of the spatial 3-manifold. Consequently, cosmological spacetimes developing a future asymptotic symmetry should represent only a negligible part of a much larger yet unexplored solution landscape. In this work, we revisit a program initiated by the second named author, aimed at constructing a new type of cosmological solution first posed by M. Anderson, where (at the right scale) two hyperbolic manifolds with a cusp separate from each other through a thin torus neck. Specifically, we prove that the so-called double-cusp solution, which models the torus neck, is stable under S1×S1 - symmetry-preserving perturbations. The proof, which has interest on its own, reduces to proving the stability of a geodesic segment as a wave map into the hyperbolic plane and partially relates to the work of Sideris on wave maps and the work of Ringström on the future asymptotics of Gowdy spacetimes. |
dc.description.es.fl_txt_mv | Versión permitida preprint. |
dc.format.extent.es.fl_str_mv | 30 p. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Bellati Barthés, A y Reiris Ithurralde, M. "Stabiliy of the double-cusp spacetimes and long-time geometrizations". [Preprint]. Publicado en: Mathematics (Differential Geometry). arXiv: 2311.17180, nov 2023, pp 1-30 . DOI: 10.48550/arXiv.2311.17180 |
dc.identifier.doi.none.fl_str_mv | 10.48550/arXiv.2311.17180 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/43928 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | arXiv |
dc.relation.ispartof.es.fl_str_mv | Mathematics (Differential Geometry), arXiv: 2311.17180, nov 2023, pp. 1-30 |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Differential geometry Hyperbolic spaces |
dc.title.none.fl_str_mv | Stabiliy of the double-cusp spacetimes and long-time geometrizations |
dc.type.es.fl_str_mv | Preprint |
dc.type.none.fl_str_mv | info:eu-repo/semantics/preprint |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/submittedVersion |
description | Versión permitida preprint. |
eu_rights_str_mv | openAccess |
format | preprint |
id | COLIBRI_dd76424f565a2570d49230bf4200a916 |
identifier_str_mv | Bellati Barthés, A y Reiris Ithurralde, M. "Stabiliy of the double-cusp spacetimes and long-time geometrizations". [Preprint]. Publicado en: Mathematics (Differential Geometry). arXiv: 2311.17180, nov 2023, pp 1-30 . DOI: 10.48550/arXiv.2311.17180 10.48550/arXiv.2311.17180 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/43928 |
publishDate | 2023 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | Bellati Barthés Alejandro Gustavo, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemáticas.Reiris Ithurralde Martín, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemáticas.2024-05-28T17:23:20Z2024-05-28T17:23:20Z2023Bellati Barthés, A y Reiris Ithurralde, M. "Stabiliy of the double-cusp spacetimes and long-time geometrizations". [Preprint]. Publicado en: Mathematics (Differential Geometry). arXiv: 2311.17180, nov 2023, pp 1-30 . DOI: 10.48550/arXiv.2311.17180https://hdl.handle.net/20.500.12008/4392810.48550/arXiv.2311.17180Versión permitida preprint.Since the early years of General Relativity, understanding the long-time behavior of the cosmological solutions of Einstein's vacuum equations has been a fundamental yet challenging task. Solutions with global symmetries, or perturbations thereof, have been extensively studied and are reasonably understood. On the other hand, thanks to the work of Fischer-Moncrief and M. Anderson, it is known that there is a tight relation between the future evolution of solutions and the Thurston decomposition of the spatial 3-manifold. Consequently, cosmological spacetimes developing a future asymptotic symmetry should represent only a negligible part of a much larger yet unexplored solution landscape. In this work, we revisit a program initiated by the second named author, aimed at constructing a new type of cosmological solution first posed by M. Anderson, where (at the right scale) two hyperbolic manifolds with a cusp separate from each other through a thin torus neck. Specifically, we prove that the so-called double-cusp solution, which models the torus neck, is stable under S1×S1 - symmetry-preserving perturbations. The proof, which has interest on its own, reduces to proving the stability of a geodesic segment as a wave map into the hyperbolic plane and partially relates to the work of Sideris on wave maps and the work of Ringström on the future asymptotics of Gowdy spacetimes.Submitted by Egaña Florencia (florega@gmail.com) on 2024-05-23T18:19:58Z No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) 2311.17180v1.pdf: 738149 bytes, checksum: 2f17eccab0c5a5b8238f76e00b279da8 (MD5)Approved for entry into archive by Faget Cecilia (lfaget@fcien.edu.uy) on 2024-05-24T13:07:59Z (GMT) No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) 2311.17180v1.pdf: 738149 bytes, checksum: 2f17eccab0c5a5b8238f76e00b279da8 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2024-05-28T17:23:20Z (GMT). No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) 2311.17180v1.pdf: 738149 bytes, checksum: 2f17eccab0c5a5b8238f76e00b279da8 (MD5) Previous issue date: 202330 p.application/pdfenengarXivMathematics (Differential Geometry), arXiv: 2311.17180, nov 2023, pp. 1-30Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Differential geometryHyperbolic spacesStabiliy of the double-cusp spacetimes and long-time geometrizationsPreprintinfo:eu-repo/semantics/preprintinfo:eu-repo/semantics/submittedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaBellati Barthés, Alejandro GustavoReiris Ithurralde, MartínLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/43928/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/43928/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-822465http://localhost:8080/xmlui/bitstream/20.500.12008/43928/3/license_text6d6e490f4468ecf5055a84af48d45653MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-825790http://localhost:8080/xmlui/bitstream/20.500.12008/43928/4/license_rdf489f03e71d39068f329bdec8798bce58MD54ORIGINAL2311.17180v1.pdf2311.17180v1.pdfapplication/pdf738149http://localhost:8080/xmlui/bitstream/20.500.12008/43928/1/2311.17180v1.pdf2f17eccab0c5a5b8238f76e00b279da8MD5120.500.12008/439282024-06-03 08:48:02.074oai:colibri.udelar.edu.uy:20.500.12008/43928VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:29:30.736688COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Stabiliy of the double-cusp spacetimes and long-time geometrizations Bellati Barthés, Alejandro Gustavo Differential geometry Hyperbolic spaces |
status_str | submittedVersion |
title | Stabiliy of the double-cusp spacetimes and long-time geometrizations |
title_full | Stabiliy of the double-cusp spacetimes and long-time geometrizations |
title_fullStr | Stabiliy of the double-cusp spacetimes and long-time geometrizations |
title_full_unstemmed | Stabiliy of the double-cusp spacetimes and long-time geometrizations |
title_short | Stabiliy of the double-cusp spacetimes and long-time geometrizations |
title_sort | Stabiliy of the double-cusp spacetimes and long-time geometrizations |
topic | Differential geometry Hyperbolic spaces |
url | https://hdl.handle.net/20.500.12008/43928 |