Stabiliy of the double-cusp spacetimes and long-time geometrizations

Bellati Barthés, Alejandro Gustavo - Reiris Ithurralde, Martín

Resumen:

Since the early years of General Relativity, understanding the long-time behavior of the cosmological solutions of Einstein's vacuum equations has been a fundamental yet challenging task. Solutions with global symmetries, or perturbations thereof, have been extensively studied and are reasonably understood. On the other hand, thanks to the work of Fischer-Moncrief and M. Anderson, it is known that there is a tight relation between the future evolution of solutions and the Thurston decomposition of the spatial 3-manifold. Consequently, cosmological spacetimes developing a future asymptotic symmetry should represent only a negligible part of a much larger yet unexplored solution landscape. In this work, we revisit a program initiated by the second named author, aimed at constructing a new type of cosmological solution first posed by M. Anderson, where (at the right scale) two hyperbolic manifolds with a cusp separate from each other through a thin torus neck. Specifically, we prove that the so-called double-cusp solution, which models the torus neck, is stable under S1×S1 - symmetry-preserving perturbations. The proof, which has interest on its own, reduces to proving the stability of a geodesic segment as a wave map into the hyperbolic plane and partially relates to the work of Sideris on wave maps and the work of Ringström on the future asymptotics of Gowdy spacetimes.


Detalles Bibliográficos
2023
Differential geometry
Hyperbolic spaces
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/43928
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807522809848528896
author Bellati Barthés, Alejandro Gustavo
author2 Reiris Ithurralde, Martín
author2_role author
author_facet Bellati Barthés, Alejandro Gustavo
Reiris Ithurralde, Martín
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
6d6e490f4468ecf5055a84af48d45653
489f03e71d39068f329bdec8798bce58
2f17eccab0c5a5b8238f76e00b279da8
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/43928/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/43928/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/43928/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/43928/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/43928/1/2311.17180v1.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Bellati Barthés Alejandro Gustavo, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemáticas.
Reiris Ithurralde Martín, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemáticas.
dc.creator.none.fl_str_mv Bellati Barthés, Alejandro Gustavo
Reiris Ithurralde, Martín
dc.date.accessioned.none.fl_str_mv 2024-05-28T17:23:20Z
dc.date.available.none.fl_str_mv 2024-05-28T17:23:20Z
dc.date.issued.none.fl_str_mv 2023
dc.description.abstract.none.fl_txt_mv Since the early years of General Relativity, understanding the long-time behavior of the cosmological solutions of Einstein's vacuum equations has been a fundamental yet challenging task. Solutions with global symmetries, or perturbations thereof, have been extensively studied and are reasonably understood. On the other hand, thanks to the work of Fischer-Moncrief and M. Anderson, it is known that there is a tight relation between the future evolution of solutions and the Thurston decomposition of the spatial 3-manifold. Consequently, cosmological spacetimes developing a future asymptotic symmetry should represent only a negligible part of a much larger yet unexplored solution landscape. In this work, we revisit a program initiated by the second named author, aimed at constructing a new type of cosmological solution first posed by M. Anderson, where (at the right scale) two hyperbolic manifolds with a cusp separate from each other through a thin torus neck. Specifically, we prove that the so-called double-cusp solution, which models the torus neck, is stable under S1×S1 - symmetry-preserving perturbations. The proof, which has interest on its own, reduces to proving the stability of a geodesic segment as a wave map into the hyperbolic plane and partially relates to the work of Sideris on wave maps and the work of Ringström on the future asymptotics of Gowdy spacetimes.
dc.description.es.fl_txt_mv Versión permitida preprint.
dc.format.extent.es.fl_str_mv 30 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Bellati Barthés, A y Reiris Ithurralde, M. "Stabiliy of the double-cusp spacetimes and long-time geometrizations". [Preprint]. Publicado en: Mathematics (Differential Geometry). arXiv: 2311.17180, nov 2023, pp 1-30 . DOI: 10.48550/arXiv.2311.17180
dc.identifier.doi.none.fl_str_mv 10.48550/arXiv.2311.17180
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/43928
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv arXiv
dc.relation.ispartof.es.fl_str_mv Mathematics (Differential Geometry), arXiv: 2311.17180, nov 2023, pp. 1-30
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Differential geometry
Hyperbolic spaces
dc.title.none.fl_str_mv Stabiliy of the double-cusp spacetimes and long-time geometrizations
dc.type.es.fl_str_mv Preprint
dc.type.none.fl_str_mv info:eu-repo/semantics/preprint
dc.type.version.none.fl_str_mv info:eu-repo/semantics/submittedVersion
description Versión permitida preprint.
eu_rights_str_mv openAccess
format preprint
id COLIBRI_dd76424f565a2570d49230bf4200a916
identifier_str_mv Bellati Barthés, A y Reiris Ithurralde, M. "Stabiliy of the double-cusp spacetimes and long-time geometrizations". [Preprint]. Publicado en: Mathematics (Differential Geometry). arXiv: 2311.17180, nov 2023, pp 1-30 . DOI: 10.48550/arXiv.2311.17180
10.48550/arXiv.2311.17180
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/43928
publishDate 2023
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Bellati Barthés Alejandro Gustavo, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemáticas.Reiris Ithurralde Martín, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemáticas.2024-05-28T17:23:20Z2024-05-28T17:23:20Z2023Bellati Barthés, A y Reiris Ithurralde, M. "Stabiliy of the double-cusp spacetimes and long-time geometrizations". [Preprint]. Publicado en: Mathematics (Differential Geometry). arXiv: 2311.17180, nov 2023, pp 1-30 . DOI: 10.48550/arXiv.2311.17180https://hdl.handle.net/20.500.12008/4392810.48550/arXiv.2311.17180Versión permitida preprint.Since the early years of General Relativity, understanding the long-time behavior of the cosmological solutions of Einstein's vacuum equations has been a fundamental yet challenging task. Solutions with global symmetries, or perturbations thereof, have been extensively studied and are reasonably understood. On the other hand, thanks to the work of Fischer-Moncrief and M. Anderson, it is known that there is a tight relation between the future evolution of solutions and the Thurston decomposition of the spatial 3-manifold. Consequently, cosmological spacetimes developing a future asymptotic symmetry should represent only a negligible part of a much larger yet unexplored solution landscape. In this work, we revisit a program initiated by the second named author, aimed at constructing a new type of cosmological solution first posed by M. Anderson, where (at the right scale) two hyperbolic manifolds with a cusp separate from each other through a thin torus neck. Specifically, we prove that the so-called double-cusp solution, which models the torus neck, is stable under S1×S1 - symmetry-preserving perturbations. The proof, which has interest on its own, reduces to proving the stability of a geodesic segment as a wave map into the hyperbolic plane and partially relates to the work of Sideris on wave maps and the work of Ringström on the future asymptotics of Gowdy spacetimes.Submitted by Egaña Florencia (florega@gmail.com) on 2024-05-23T18:19:58Z No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) 2311.17180v1.pdf: 738149 bytes, checksum: 2f17eccab0c5a5b8238f76e00b279da8 (MD5)Approved for entry into archive by Faget Cecilia (lfaget@fcien.edu.uy) on 2024-05-24T13:07:59Z (GMT) No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) 2311.17180v1.pdf: 738149 bytes, checksum: 2f17eccab0c5a5b8238f76e00b279da8 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2024-05-28T17:23:20Z (GMT). No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) 2311.17180v1.pdf: 738149 bytes, checksum: 2f17eccab0c5a5b8238f76e00b279da8 (MD5) Previous issue date: 202330 p.application/pdfenengarXivMathematics (Differential Geometry), arXiv: 2311.17180, nov 2023, pp. 1-30Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)Differential geometryHyperbolic spacesStabiliy of the double-cusp spacetimes and long-time geometrizationsPreprintinfo:eu-repo/semantics/preprintinfo:eu-repo/semantics/submittedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaBellati Barthés, Alejandro GustavoReiris Ithurralde, MartínLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/43928/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/43928/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-822465http://localhost:8080/xmlui/bitstream/20.500.12008/43928/3/license_text6d6e490f4468ecf5055a84af48d45653MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-825790http://localhost:8080/xmlui/bitstream/20.500.12008/43928/4/license_rdf489f03e71d39068f329bdec8798bce58MD54ORIGINAL2311.17180v1.pdf2311.17180v1.pdfapplication/pdf738149http://localhost:8080/xmlui/bitstream/20.500.12008/43928/1/2311.17180v1.pdf2f17eccab0c5a5b8238f76e00b279da8MD5120.500.12008/439282024-06-03 08:48:02.074oai:colibri.udelar.edu.uy:20.500.12008/43928VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:29:30.736688COLIBRI - Universidad de la Repúblicafalse
spellingShingle Stabiliy of the double-cusp spacetimes and long-time geometrizations
Bellati Barthés, Alejandro Gustavo
Differential geometry
Hyperbolic spaces
status_str submittedVersion
title Stabiliy of the double-cusp spacetimes and long-time geometrizations
title_full Stabiliy of the double-cusp spacetimes and long-time geometrizations
title_fullStr Stabiliy of the double-cusp spacetimes and long-time geometrizations
title_full_unstemmed Stabiliy of the double-cusp spacetimes and long-time geometrizations
title_short Stabiliy of the double-cusp spacetimes and long-time geometrizations
title_sort Stabiliy of the double-cusp spacetimes and long-time geometrizations
topic Differential geometry
Hyperbolic spaces
url https://hdl.handle.net/20.500.12008/43928