Periodic analogues of the Kerr solutions: a numerical study
Resumen:
In recent years black hole configurations with non standard topology or with non standard asymptotic have gained considerable attention. In this article we carry out numerical investigations aimed to find periodic coaxial configurations of co-rotating 3+1 vacuum black holes, for which existence and uniqueness has not yet been theo- retically proven. The aimed configurations would extend Myers/Korotkin-Nicolai’s family of non-rotating (static) coaxial arrays of black holes. We find that numerical solutions with a given value for the area A and for the angular momentum J of the horizons appear to exist only when the separation between consecutive horizons is larger than a certain critical value that depends only on A and |J|. We also establish that the solutions have the same Lewis’s cylindrical asymptotic as Stockum’s infinite rotating cylinders. Below the mentioned critical value the rotational energy appears to be too big to sustain a global equilibrium and a singularity shows up at a finite distance from the bulk. This phenomenon is a relative of Stockum’s asymp-totic’s collapse, manifesting when the angular momentum (per unit of axial length) reaches a critical value compared to the mass (per unit of axial length), and that results from a transition in the Lewis’s class of the cylindrical exterior solution. This remarkable phenomenon seems to be unexplored in the context of coaxial arrays of black holes. Ergospheres and other global properties are also presented in detail.
2022 | |
VACUUM BLACK HOLES STOCKUM'S CYLINDRIC SOLUTIONS MYERS/KOROTKIN-NICOLAI SOLUTIONS GENERAL RELATIVITY AND QUANTUM COSMOLOGY |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/44822 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
_version_ | 1807522809982746624 |
---|---|
author | Peraza, Javier |
author2 | Reiris Ithurralde, Martín Ortiz, Omar |
author2_role | author author |
author_facet | Peraza, Javier Reiris Ithurralde, Martín Ortiz, Omar |
author_role | author |
bitstream.checksum.fl_str_mv | 6429389a7df7277b72b7924fdc7d47a9 a006180e3f5b2ad0b88185d14284c0e0 df0749cf944f9d2754bc76e8ce56250c 489f03e71d39068f329bdec8798bce58 9fe9e5580c0c39c7b49ea39fc6ae9e16 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/44822/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/44822/2/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/44822/3/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/44822/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/44822/1/2210.12898v1.pdf |
collection | COLIBRI |
dc.contributor.filiacion.none.fl_str_mv | Peraza Javier, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática. Reiris Ithurralde Martín, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática. Ortiz Omar |
dc.creator.none.fl_str_mv | Peraza, Javier Reiris Ithurralde, Martín Ortiz, Omar |
dc.date.accessioned.none.fl_str_mv | 2024-07-17T21:13:43Z |
dc.date.available.none.fl_str_mv | 2024-07-17T21:13:43Z |
dc.date.issued.none.fl_str_mv | 2022 |
dc.description.abstract.none.fl_txt_mv | In recent years black hole configurations with non standard topology or with non standard asymptotic have gained considerable attention. In this article we carry out numerical investigations aimed to find periodic coaxial configurations of co-rotating 3+1 vacuum black holes, for which existence and uniqueness has not yet been theo- retically proven. The aimed configurations would extend Myers/Korotkin-Nicolai’s family of non-rotating (static) coaxial arrays of black holes. We find that numerical solutions with a given value for the area A and for the angular momentum J of the horizons appear to exist only when the separation between consecutive horizons is larger than a certain critical value that depends only on A and |J|. We also establish that the solutions have the same Lewis’s cylindrical asymptotic as Stockum’s infinite rotating cylinders. Below the mentioned critical value the rotational energy appears to be too big to sustain a global equilibrium and a singularity shows up at a finite distance from the bulk. This phenomenon is a relative of Stockum’s asymp-totic’s collapse, manifesting when the angular momentum (per unit of axial length) reaches a critical value compared to the mass (per unit of axial length), and that results from a transition in the Lewis’s class of the cylindrical exterior solution. This remarkable phenomenon seems to be unexplored in the context of coaxial arrays of black holes. Ergospheres and other global properties are also presented in detail. |
dc.description.es.fl_txt_mv | Versión permitida preprint. Publicado también en: Classical and Quantum Gravity, 40(17). 2023. DOI: 10.1088/1361-6382/ace7a7 |
dc.format.extent.es.fl_str_mv | 25 h. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Peraza, J, Reiris Ithurralde, M y Ortiz, O. "Periodic analogues of the Kerr solutions: a numerical study" [Preprint] Publicado en: General Relativity and Quantum Cosmology. 2022, arXiv:2210.12898v1, oct. 2022, pp 1-25.. |
dc.identifier.doi.none.fl_str_mv | 10.48550/arXiv.2210.12898 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/44822 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | arXiv |
dc.relation.ispartof.es.fl_str_mv | General Relativity and Quantum Cosmology, arXiv:2210.12898v1, oct. 2022, pp 1-25. |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.other.es.fl_str_mv | VACUUM BLACK HOLES STOCKUM'S CYLINDRIC SOLUTIONS MYERS/KOROTKIN-NICOLAI SOLUTIONS GENERAL RELATIVITY AND QUANTUM COSMOLOGY |
dc.title.none.fl_str_mv | Periodic analogues of the Kerr solutions: a numerical study |
dc.type.es.fl_str_mv | Preprint |
dc.type.none.fl_str_mv | info:eu-repo/semantics/preprint |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/submittedVersion |
description | Versión permitida preprint. |
eu_rights_str_mv | openAccess |
format | preprint |
id | COLIBRI_db5d97819166c8ce27113fab5358cac0 |
identifier_str_mv | Peraza, J, Reiris Ithurralde, M y Ortiz, O. "Periodic analogues of the Kerr solutions: a numerical study" [Preprint] Publicado en: General Relativity and Quantum Cosmology. 2022, arXiv:2210.12898v1, oct. 2022, pp 1-25.. 10.48550/arXiv.2210.12898 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/44822 |
publishDate | 2022 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
spelling | Peraza Javier, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática.Reiris Ithurralde Martín, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática.Ortiz Omar2024-07-17T21:13:43Z2024-07-17T21:13:43Z2022Peraza, J, Reiris Ithurralde, M y Ortiz, O. "Periodic analogues of the Kerr solutions: a numerical study" [Preprint] Publicado en: General Relativity and Quantum Cosmology. 2022, arXiv:2210.12898v1, oct. 2022, pp 1-25..https://hdl.handle.net/20.500.12008/4482210.48550/arXiv.2210.12898Versión permitida preprint.Publicado también en: Classical and Quantum Gravity, 40(17). 2023. DOI: 10.1088/1361-6382/ace7a7In recent years black hole configurations with non standard topology or with non standard asymptotic have gained considerable attention. In this article we carry out numerical investigations aimed to find periodic coaxial configurations of co-rotating 3+1 vacuum black holes, for which existence and uniqueness has not yet been theo- retically proven. The aimed configurations would extend Myers/Korotkin-Nicolai’s family of non-rotating (static) coaxial arrays of black holes. We find that numerical solutions with a given value for the area A and for the angular momentum J of the horizons appear to exist only when the separation between consecutive horizons is larger than a certain critical value that depends only on A and |J|. We also establish that the solutions have the same Lewis’s cylindrical asymptotic as Stockum’s infinite rotating cylinders. Below the mentioned critical value the rotational energy appears to be too big to sustain a global equilibrium and a singularity shows up at a finite distance from the bulk. This phenomenon is a relative of Stockum’s asymp-totic’s collapse, manifesting when the angular momentum (per unit of axial length) reaches a critical value compared to the mass (per unit of axial length), and that results from a transition in the Lewis’s class of the cylindrical exterior solution. This remarkable phenomenon seems to be unexplored in the context of coaxial arrays of black holes. Ergospheres and other global properties are also presented in detail.Submitted by Egaña Florencia (florega@gmail.com) on 2024-07-16T16:02:24Z No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) 2210.12898v1.pdf: 1969304 bytes, checksum: 9fe9e5580c0c39c7b49ea39fc6ae9e16 (MD5)Approved for entry into archive by Faget Cecilia (lfaget@fcien.edu.uy) on 2024-07-17T18:10:37Z (GMT) No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) 2210.12898v1.pdf: 1969304 bytes, checksum: 9fe9e5580c0c39c7b49ea39fc6ae9e16 (MD5)Made available in DSpace by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2024-07-17T21:13:43Z (GMT). No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) 2210.12898v1.pdf: 1969304 bytes, checksum: 9fe9e5580c0c39c7b49ea39fc6ae9e16 (MD5) Previous issue date: 202225 h.application/pdfenengarXivGeneral Relativity and Quantum Cosmology, arXiv:2210.12898v1, oct. 2022, pp 1-25.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)VACUUM BLACK HOLESSTOCKUM'S CYLINDRIC SOLUTIONSMYERS/KOROTKIN-NICOLAI SOLUTIONSGENERAL RELATIVITY AND QUANTUM COSMOLOGYPeriodic analogues of the Kerr solutions: a numerical studyPreprintinfo:eu-repo/semantics/preprintinfo:eu-repo/semantics/submittedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaPeraza, JavierReiris Ithurralde, MartínOrtiz, OmarLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/44822/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/44822/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-822527http://localhost:8080/xmlui/bitstream/20.500.12008/44822/3/license_textdf0749cf944f9d2754bc76e8ce56250cMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-825790http://localhost:8080/xmlui/bitstream/20.500.12008/44822/4/license_rdf489f03e71d39068f329bdec8798bce58MD54ORIGINAL2210.12898v1.pdf2210.12898v1.pdfapplication/pdf1969304http://localhost:8080/xmlui/bitstream/20.500.12008/44822/1/2210.12898v1.pdf9fe9e5580c0c39c7b49ea39fc6ae9e16MD5120.500.12008/448222024-07-17 18:13:43.019oai:colibri.udelar.edu.uy:20.500.12008/44822VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:29:31.336456COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Periodic analogues of the Kerr solutions: a numerical study Peraza, Javier VACUUM BLACK HOLES STOCKUM'S CYLINDRIC SOLUTIONS MYERS/KOROTKIN-NICOLAI SOLUTIONS GENERAL RELATIVITY AND QUANTUM COSMOLOGY |
status_str | submittedVersion |
title | Periodic analogues of the Kerr solutions: a numerical study |
title_full | Periodic analogues of the Kerr solutions: a numerical study |
title_fullStr | Periodic analogues of the Kerr solutions: a numerical study |
title_full_unstemmed | Periodic analogues of the Kerr solutions: a numerical study |
title_short | Periodic analogues of the Kerr solutions: a numerical study |
title_sort | Periodic analogues of the Kerr solutions: a numerical study |
topic | VACUUM BLACK HOLES STOCKUM'S CYLINDRIC SOLUTIONS MYERS/KOROTKIN-NICOLAI SOLUTIONS GENERAL RELATIVITY AND QUANTUM COSMOLOGY |
url | https://hdl.handle.net/20.500.12008/44822 |