Periodic analogues of the Kerr solutions: a numerical study

Peraza, Javier - Reiris Ithurralde, Martín - Ortiz, Omar

Resumen:

In recent years black hole configurations with non standard topology or with non standard asymptotic have gained considerable attention. In this article we carry out numerical investigations aimed to find periodic coaxial configurations of co-rotating 3+1 vacuum black holes, for which existence and uniqueness has not yet been theo- retically proven. The aimed configurations would extend Myers/Korotkin-Nicolai’s family of non-rotating (static) coaxial arrays of black holes. We find that numerical solutions with a given value for the area A and for the angular momentum J of the horizons appear to exist only when the separation between consecutive horizons is larger than a certain critical value that depends only on A and |J|. We also establish that the solutions have the same Lewis’s cylindrical asymptotic as Stockum’s infinite rotating cylinders. Below the mentioned critical value the rotational energy appears to be too big to sustain a global equilibrium and a singularity shows up at a finite distance from the bulk. This phenomenon is a relative of Stockum’s asymp-totic’s collapse, manifesting when the angular momentum (per unit of axial length) reaches a critical value compared to the mass (per unit of axial length), and that results from a transition in the Lewis’s class of the cylindrical exterior solution. This remarkable phenomenon seems to be unexplored in the context of coaxial arrays of black holes. Ergospheres and other global properties are also presented in detail.


Detalles Bibliográficos
2022
VACUUM BLACK HOLES
STOCKUM'S CYLINDRIC SOLUTIONS
MYERS/KOROTKIN-NICOLAI SOLUTIONS
GENERAL RELATIVITY AND QUANTUM COSMOLOGY
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/44822
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807522809982746624
author Peraza, Javier
author2 Reiris Ithurralde, Martín
Ortiz, Omar
author2_role author
author
author_facet Peraza, Javier
Reiris Ithurralde, Martín
Ortiz, Omar
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
df0749cf944f9d2754bc76e8ce56250c
489f03e71d39068f329bdec8798bce58
9fe9e5580c0c39c7b49ea39fc6ae9e16
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/44822/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/44822/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/44822/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/44822/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/44822/1/2210.12898v1.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Peraza Javier, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática.
Reiris Ithurralde Martín, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática.
Ortiz Omar
dc.creator.none.fl_str_mv Peraza, Javier
Reiris Ithurralde, Martín
Ortiz, Omar
dc.date.accessioned.none.fl_str_mv 2024-07-17T21:13:43Z
dc.date.available.none.fl_str_mv 2024-07-17T21:13:43Z
dc.date.issued.none.fl_str_mv 2022
dc.description.abstract.none.fl_txt_mv In recent years black hole configurations with non standard topology or with non standard asymptotic have gained considerable attention. In this article we carry out numerical investigations aimed to find periodic coaxial configurations of co-rotating 3+1 vacuum black holes, for which existence and uniqueness has not yet been theo- retically proven. The aimed configurations would extend Myers/Korotkin-Nicolai’s family of non-rotating (static) coaxial arrays of black holes. We find that numerical solutions with a given value for the area A and for the angular momentum J of the horizons appear to exist only when the separation between consecutive horizons is larger than a certain critical value that depends only on A and |J|. We also establish that the solutions have the same Lewis’s cylindrical asymptotic as Stockum’s infinite rotating cylinders. Below the mentioned critical value the rotational energy appears to be too big to sustain a global equilibrium and a singularity shows up at a finite distance from the bulk. This phenomenon is a relative of Stockum’s asymp-totic’s collapse, manifesting when the angular momentum (per unit of axial length) reaches a critical value compared to the mass (per unit of axial length), and that results from a transition in the Lewis’s class of the cylindrical exterior solution. This remarkable phenomenon seems to be unexplored in the context of coaxial arrays of black holes. Ergospheres and other global properties are also presented in detail.
dc.description.es.fl_txt_mv Versión permitida preprint.
Publicado también en: Classical and Quantum Gravity, 40(17). 2023. DOI: 10.1088/1361-6382/ace7a7
dc.format.extent.es.fl_str_mv 25 h.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Peraza, J, Reiris Ithurralde, M y Ortiz, O. "Periodic analogues of the Kerr solutions: a numerical study" [Preprint] Publicado en: General Relativity and Quantum Cosmology. 2022, arXiv:2210.12898v1, oct. 2022, pp 1-25..
dc.identifier.doi.none.fl_str_mv 10.48550/arXiv.2210.12898
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/44822
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv arXiv
dc.relation.ispartof.es.fl_str_mv General Relativity and Quantum Cosmology, arXiv:2210.12898v1, oct. 2022, pp 1-25.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.other.es.fl_str_mv VACUUM BLACK HOLES
STOCKUM'S CYLINDRIC SOLUTIONS
MYERS/KOROTKIN-NICOLAI SOLUTIONS
GENERAL RELATIVITY AND QUANTUM COSMOLOGY
dc.title.none.fl_str_mv Periodic analogues of the Kerr solutions: a numerical study
dc.type.es.fl_str_mv Preprint
dc.type.none.fl_str_mv info:eu-repo/semantics/preprint
dc.type.version.none.fl_str_mv info:eu-repo/semantics/submittedVersion
description Versión permitida preprint.
eu_rights_str_mv openAccess
format preprint
id COLIBRI_db5d97819166c8ce27113fab5358cac0
identifier_str_mv Peraza, J, Reiris Ithurralde, M y Ortiz, O. "Periodic analogues of the Kerr solutions: a numerical study" [Preprint] Publicado en: General Relativity and Quantum Cosmology. 2022, arXiv:2210.12898v1, oct. 2022, pp 1-25..
10.48550/arXiv.2210.12898
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/44822
publishDate 2022
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Peraza Javier, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática.Reiris Ithurralde Martín, Universidad de la República (Uruguay). Facultad de Ciencias. Centro de Matemática.Ortiz Omar2024-07-17T21:13:43Z2024-07-17T21:13:43Z2022Peraza, J, Reiris Ithurralde, M y Ortiz, O. "Periodic analogues of the Kerr solutions: a numerical study" [Preprint] Publicado en: General Relativity and Quantum Cosmology. 2022, arXiv:2210.12898v1, oct. 2022, pp 1-25..https://hdl.handle.net/20.500.12008/4482210.48550/arXiv.2210.12898Versión permitida preprint.Publicado también en: Classical and Quantum Gravity, 40(17). 2023. DOI: 10.1088/1361-6382/ace7a7In recent years black hole configurations with non standard topology or with non standard asymptotic have gained considerable attention. In this article we carry out numerical investigations aimed to find periodic coaxial configurations of co-rotating 3+1 vacuum black holes, for which existence and uniqueness has not yet been theo- retically proven. The aimed configurations would extend Myers/Korotkin-Nicolai’s family of non-rotating (static) coaxial arrays of black holes. We find that numerical solutions with a given value for the area A and for the angular momentum J of the horizons appear to exist only when the separation between consecutive horizons is larger than a certain critical value that depends only on A and |J|. We also establish that the solutions have the same Lewis’s cylindrical asymptotic as Stockum’s infinite rotating cylinders. Below the mentioned critical value the rotational energy appears to be too big to sustain a global equilibrium and a singularity shows up at a finite distance from the bulk. This phenomenon is a relative of Stockum’s asymp-totic’s collapse, manifesting when the angular momentum (per unit of axial length) reaches a critical value compared to the mass (per unit of axial length), and that results from a transition in the Lewis’s class of the cylindrical exterior solution. This remarkable phenomenon seems to be unexplored in the context of coaxial arrays of black holes. Ergospheres and other global properties are also presented in detail.Submitted by Egaña Florencia (florega@gmail.com) on 2024-07-16T16:02:24Z No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) 2210.12898v1.pdf: 1969304 bytes, checksum: 9fe9e5580c0c39c7b49ea39fc6ae9e16 (MD5)Approved for entry into archive by Faget Cecilia (lfaget@fcien.edu.uy) on 2024-07-17T18:10:37Z (GMT) No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) 2210.12898v1.pdf: 1969304 bytes, checksum: 9fe9e5580c0c39c7b49ea39fc6ae9e16 (MD5)Made available in DSpace by Seroubian Mabel (mabel.seroubian@seciu.edu.uy) on 2024-07-17T21:13:43Z (GMT). No. of bitstreams: 2 license_rdf: 25790 bytes, checksum: 489f03e71d39068f329bdec8798bce58 (MD5) 2210.12898v1.pdf: 1969304 bytes, checksum: 9fe9e5580c0c39c7b49ea39fc6ae9e16 (MD5) Previous issue date: 202225 h.application/pdfenengarXivGeneral Relativity and Quantum Cosmology, arXiv:2210.12898v1, oct. 2022, pp 1-25.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)VACUUM BLACK HOLESSTOCKUM'S CYLINDRIC SOLUTIONSMYERS/KOROTKIN-NICOLAI SOLUTIONSGENERAL RELATIVITY AND QUANTUM COSMOLOGYPeriodic analogues of the Kerr solutions: a numerical studyPreprintinfo:eu-repo/semantics/preprintinfo:eu-repo/semantics/submittedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaPeraza, JavierReiris Ithurralde, MartínOrtiz, OmarLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/44822/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/44822/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-822527http://localhost:8080/xmlui/bitstream/20.500.12008/44822/3/license_textdf0749cf944f9d2754bc76e8ce56250cMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-825790http://localhost:8080/xmlui/bitstream/20.500.12008/44822/4/license_rdf489f03e71d39068f329bdec8798bce58MD54ORIGINAL2210.12898v1.pdf2210.12898v1.pdfapplication/pdf1969304http://localhost:8080/xmlui/bitstream/20.500.12008/44822/1/2210.12898v1.pdf9fe9e5580c0c39c7b49ea39fc6ae9e16MD5120.500.12008/448222024-07-17 18:13:43.019oai:colibri.udelar.edu.uy:20.500.12008/44822VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:29:31.336456COLIBRI - Universidad de la Repúblicafalse
spellingShingle Periodic analogues of the Kerr solutions: a numerical study
Peraza, Javier
VACUUM BLACK HOLES
STOCKUM'S CYLINDRIC SOLUTIONS
MYERS/KOROTKIN-NICOLAI SOLUTIONS
GENERAL RELATIVITY AND QUANTUM COSMOLOGY
status_str submittedVersion
title Periodic analogues of the Kerr solutions: a numerical study
title_full Periodic analogues of the Kerr solutions: a numerical study
title_fullStr Periodic analogues of the Kerr solutions: a numerical study
title_full_unstemmed Periodic analogues of the Kerr solutions: a numerical study
title_short Periodic analogues of the Kerr solutions: a numerical study
title_sort Periodic analogues of the Kerr solutions: a numerical study
topic VACUUM BLACK HOLES
STOCKUM'S CYLINDRIC SOLUTIONS
MYERS/KOROTKIN-NICOLAI SOLUTIONS
GENERAL RELATIVITY AND QUANTUM COSMOLOGY
url https://hdl.handle.net/20.500.12008/44822