Pronóstico de energía solar a partir de imágenes satelitales
Supervisor(es): Alonso-Suárez, Rodrigo
Resumen:
Las energías renovables son un recurso energético que se renueva año a año y representan una forma de energía más limpia que las basadas en combustibles fósiles. Como contrapartida, la disponibilidad de esta energía se rige por el comportamiento variable de la meteorología local. Esto es especialmente crítico para las energías renovables intermitentes, como la energía solar y eólica, las cuales presentan fluctuaciones importantes en cortas escalas de tiempo. La radiación solar a nivel de suelo presenta variaciones debido al movimiento del Sol y la presencia de nubosidad, lo que afecta directamente la generación de potencia en las plantas fotovoltaicas (PV). La red eléctrica es un sistema donde en todo momento la generación debe igualar a la demanda, por lo que cambios rápidos en la generación deben ser compensados por el sistema. Por tanto, el manejo de estas fluctuaciones es el principal desafío para incorporar en gran escala la energía solar a las redes eléctricas. Esto genera la necesidad de anticipar el recurso que estará disponible para poder tomar decisiones óptimas en el despacho eléctrico. La predicción permite reducir costos de operación del sistema, y habilita a establecer con mayor precisión precios y cantidades de venta, tanto para exportación de energía eléctrica como para el mercado interno. La capacidad de predicción es una de las formas para mitigar el efecto de esta variabilidad de corto plazo, permitiendo un manejo más eficiente de la red y reduciendo la incertidumbre de la valoración del recurso. La energía solar puede pronosticarse con diferentes técnicas. La elección de la técnica depende principalmente del horizonte de predicción de interés. En esta tesis se implementa y evalúa una técnica para pronóstico de energía solar a escala intradiaria a partir de imágenes satelitales, que atiende la predicción desde 1 a 5 horas hacia el futuro. Se evalúa el desempeño de la predicción a nivel de imagen, irradiación en tierra y generación PV, de modo de evaluar la incertidumbre de la cadena completa de predicción, desde nubosidad hasta generación eléctrica. La metodología de pronóstico está basada en una técnica que compara regiones en dos imágenes consecutivas y estima el movimiento entre ambas imágenes minimizando el error cuadrático medio entre regiones, para luego extrapolar el movimiento nuboso hacia el futuro. A partir de las imágenes pronosticadas, se calcula la irradiación solar en superficie estableciendo así una predicción de irradiación solar. Luego, con un modelo de planta PV, se genera un pronóstico de generación solar. Para esto último se ajustó una parametrización simple entre la irradiación sobre los paneles y la generación PV, que busca reflejar el comportamiento de cada una de las tres plantas PV consideradas en este trabajo, instaladas en el noroeste del país y operativas en los últimos 5 años aproximadamente. El desempeño de la metodología se compara con la referencia que establece el procedimiento de persistencia. Se obtiene que en todos los niveles (nubosidad, irradiación y generación) el método implementado presenta mejor desempeño que la persistencia, por lo que se justifica la utilización de esta metodología de mayor complejidad para realizar el pronóstico. Este es el primer trabajo en Latinoamérica que desarrolla localmente la predicción solar basada en imágenes de satélite. Además, se implementan y evalúan todas las etapas del pronóstico, desde las imágenes en crudo de satélite hasta la predicción final de generación PV.
2020 | |
ENERGIA SOLAR RECURSOS RENOVABLES GENERACION DE ENERGIA ELECTRICA |
|
Español | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/28330 | |
Acceso abierto | |
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0) |
Sumario: | Las energías renovables son un recurso energético que se renueva año a año y representan una forma de energía más limpia que las basadas en combustibles fósiles. Como contrapartida, la disponibilidad de esta energía se rige por el comportamiento variable de la meteorología local. Esto es especialmente crítico para las energías renovables intermitentes, como la energía solar y eólica, las cuales presentan fluctuaciones importantes en cortas escalas de tiempo. La radiación solar a nivel de suelo presenta variaciones debido al movimiento del Sol y la presencia de nubosidad, lo que afecta directamente la generación de potencia en las plantas fotovoltaicas (PV). La red eléctrica es un sistema donde en todo momento la generación debe igualar a la demanda, por lo que cambios rápidos en la generación deben ser compensados por el sistema. Por tanto, el manejo de estas fluctuaciones es el principal desafío para incorporar en gran escala la energía solar a las redes eléctricas. Esto genera la necesidad de anticipar el recurso que estará disponible para poder tomar decisiones óptimas en el despacho eléctrico. La predicción permite reducir costos de operación del sistema, y habilita a establecer con mayor precisión precios y cantidades de venta, tanto para exportación de energía eléctrica como para el mercado interno. La capacidad de predicción es una de las formas para mitigar el efecto de esta variabilidad de corto plazo, permitiendo un manejo más eficiente de la red y reduciendo la incertidumbre de la valoración del recurso. La energía solar puede pronosticarse con diferentes técnicas. La elección de la técnica depende principalmente del horizonte de predicción de interés. En esta tesis se implementa y evalúa una técnica para pronóstico de energía solar a escala intradiaria a partir de imágenes satelitales, que atiende la predicción desde 1 a 5 horas hacia el futuro. Se evalúa el desempeño de la predicción a nivel de imagen, irradiación en tierra y generación PV, de modo de evaluar la incertidumbre de la cadena completa de predicción, desde nubosidad hasta generación eléctrica. La metodología de pronóstico está basada en una técnica que compara regiones en dos imágenes consecutivas y estima el movimiento entre ambas imágenes minimizando el error cuadrático medio entre regiones, para luego extrapolar el movimiento nuboso hacia el futuro. A partir de las imágenes pronosticadas, se calcula la irradiación solar en superficie estableciendo así una predicción de irradiación solar. Luego, con un modelo de planta PV, se genera un pronóstico de generación solar. Para esto último se ajustó una parametrización simple entre la irradiación sobre los paneles y la generación PV, que busca reflejar el comportamiento de cada una de las tres plantas PV consideradas en este trabajo, instaladas en el noroeste del país y operativas en los últimos 5 años aproximadamente. El desempeño de la metodología se compara con la referencia que establece el procedimiento de persistencia. Se obtiene que en todos los niveles (nubosidad, irradiación y generación) el método implementado presenta mejor desempeño que la persistencia, por lo que se justifica la utilización de esta metodología de mayor complejidad para realizar el pronóstico. Este es el primer trabajo en Latinoamérica que desarrolla localmente la predicción solar basada en imágenes de satélite. Además, se implementan y evalúan todas las etapas del pronóstico, desde las imágenes en crudo de satélite hasta la predicción final de generación PV. |
---|