Unsupervised thresholds for shape matching
Resumen:
Shape recognition systems usually order a fixed number of best matches to each query, but do not address or answer the two following questions: Is a query shape in a given database? How can we be sure that a match is correct? This communication deals with these two key points. A database being given, with each shape S and each distance /spl delta/, we associate its number of false alarms NFA(S, /spl delta/), namely the expectation of the number of shapes at distance /spl delta/ in the database. Assume that NFA(S, /spl delta/) is very small with respect to 1, and that a shape S' is found at distance /spl delta/ from S in the database. This match could not occur just by chance and is therefore a meaningful detection. Its explanation is usually the common origin of both shapes. Experimental evidence will show that NFA(S, /spl delta/) can be predicted accurately.
2003 | |
Visual databases Image matching Computer vision |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/21252 | |
Acceso abierto | |
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND) |
Resultados similares
-
Robust estimation of local affine maps and its applications to image matching.
Autor(es):: Rodriguez, Mariano
Fecha de publicación:: (2020) -
Automatic thresholds for shape recognition
Autor(es):: Musé, Pablo
Fecha de publicación:: (2003) -
Semantic image segmentation using morphological tools
Autor(es):: Pardo, Alvaro
Fecha de publicación:: (2002) -
TReLSU-HS : A new handshape dataset for Uruguayan Sign Language Recognition.
Autor(es):: Stassi Danielli, Ariel Esteban
Fecha de publicación:: (2020) -
Toward a computational theory of perception
Autor(es):: Grompone von Gioi, Rafael
Fecha de publicación:: (2009)