Unsupervised thresholds for shape matching

Musé, Pablo - Sur, Frederic - Cao, Frederic - Gousseau, Yann

Resumen:

Shape recognition systems usually order a fixed number of best matches to each query, but do not address or answer the two following questions: Is a query shape in a given database? How can we be sure that a match is correct? This communication deals with these two key points. A database being given, with each shape S and each distance /spl delta/, we associate its number of false alarms NFA(S, /spl delta/), namely the expectation of the number of shapes at distance /spl delta/ in the database. Assume that NFA(S, /spl delta/) is very small with respect to 1, and that a shape S' is found at distance /spl delta/ from S in the database. This match could not occur just by chance and is therefore a meaningful detection. Its explanation is usually the common origin of both shapes. Experimental evidence will show that NFA(S, /spl delta/) can be predicted accurately.


Detalles Bibliográficos
2003
Visual databases
Image matching
Computer vision
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/21252
Acceso abierto
Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)
_version_ 1807522894956199936
author Musé, Pablo
author2 Sur, Frederic
Cao, Frederic
Gousseau, Yann
author2_role author
author
author
author_facet Musé, Pablo
Sur, Frederic
Cao, Frederic
Gousseau, Yann
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
d41d8cd98f00b204e9800998ecf8427e
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
73b2621378a0a5b1d5bf38f899e2de87
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/21252/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/21252/2/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/21252/3/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/21252/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/21252/1/unsupervised-tresholds.pdf
collection COLIBRI
dc.creator.none.fl_str_mv Musé, Pablo
Sur, Frederic
Cao, Frederic
Gousseau, Yann
dc.date.accessioned.none.fl_str_mv 2019-07-03T16:36:13Z
dc.date.available.none.fl_str_mv 2019-07-03T16:36:13Z
dc.date.issued.es.fl_str_mv 2003
dc.date.submitted.es.fl_str_mv 20190703
dc.description.abstract.none.fl_txt_mv Shape recognition systems usually order a fixed number of best matches to each query, but do not address or answer the two following questions: Is a query shape in a given database? How can we be sure that a match is correct? This communication deals with these two key points. A database being given, with each shape S and each distance /spl delta/, we associate its number of false alarms NFA(S, /spl delta/), namely the expectation of the number of shapes at distance /spl delta/ in the database. Assume that NFA(S, /spl delta/) is very small with respect to 1, and that a shape S' is found at distance /spl delta/ from S in the database. This match could not occur just by chance and is therefore a meaningful detection. Its explanation is usually the common origin of both shapes. Experimental evidence will show that NFA(S, /spl delta/) can be predicted accurately.
dc.identifier.citation.es.fl_str_mv Musé, P, Sur, Frederic, Cao, Frederic, Gousseau, Yann. Unsupervised thresholds for shape matching [Preprint] Publicado en International Conference on Image Processing, 2003. Proceedings. Doi 10.1109/ICIP.2003.1246763
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/21252
dc.language.iso.none.fl_str_mv en
eng
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.en.fl_str_mv Visual databases
Image matching
Computer vision
dc.title.none.fl_str_mv Unsupervised thresholds for shape matching
dc.type.en.fl_str_mv Preprint
dc.type.none.fl_str_mv info:eu-repo/semantics/preprint
dc.type.version.none.fl_str_mv info:eu-repo/semantics/submittedVersion
description Shape recognition systems usually order a fixed number of best matches to each query, but do not address or answer the two following questions: Is a query shape in a given database? How can we be sure that a match is correct? This communication deals with these two key points. A database being given, with each shape S and each distance /spl delta/, we associate its number of false alarms NFA(S, /spl delta/), namely the expectation of the number of shapes at distance /spl delta/ in the database. Assume that NFA(S, /spl delta/) is very small with respect to 1, and that a shape S' is found at distance /spl delta/ from S in the database. This match could not occur just by chance and is therefore a meaningful detection. Its explanation is usually the common origin of both shapes. Experimental evidence will show that NFA(S, /spl delta/) can be predicted accurately.
eu_rights_str_mv openAccess
format preprint
id COLIBRI_daa6959d60206f27bc7e7790b24f8932
identifier_str_mv Musé, P, Sur, Frederic, Cao, Frederic, Gousseau, Yann. Unsupervised thresholds for shape matching [Preprint] Publicado en International Conference on Image Processing, 2003. Proceedings. Doi 10.1109/ICIP.2003.1246763
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/21252
publishDate 2003
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)
spelling 2019-07-03T16:36:13Z2019-07-03T16:36:13Z200320190703Musé, P, Sur, Frederic, Cao, Frederic, Gousseau, Yann. Unsupervised thresholds for shape matching [Preprint] Publicado en International Conference on Image Processing, 2003. Proceedings. Doi 10.1109/ICIP.2003.1246763https://hdl.handle.net/20.500.12008/21252Shape recognition systems usually order a fixed number of best matches to each query, but do not address or answer the two following questions: Is a query shape in a given database? How can we be sure that a match is correct? This communication deals with these two key points. A database being given, with each shape S and each distance /spl delta/, we associate its number of false alarms NFA(S, /spl delta/), namely the expectation of the number of shapes at distance /spl delta/ in the database. Assume that NFA(S, /spl delta/) is very small with respect to 1, and that a shape S' is found at distance /spl delta/ from S in the database. This match could not occur just by chance and is therefore a meaningful detection. Its explanation is usually the common origin of both shapes. Experimental evidence will show that NFA(S, /spl delta/) can be predicted accurately.Made available in DSpace on 2019-07-03T16:36:13Z (GMT). No. of bitstreams: 5 unsupervised-tresholds.pdf: 364801 bytes, checksum: 73b2621378a0a5b1d5bf38f899e2de87 (MD5) license_text: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) license_url: 49 bytes, checksum: 4afdbb8c545fd630ea7db775da747b2f (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) license.txt: 4267 bytes, checksum: 6429389a7df7277b72b7924fdc7d47a9 (MD5) Previous issue date: 2003enengLas obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución – No Comercial – Sin Derivadas (CC - By-NC-ND)Visual databasesImage matchingComputer visionUnsupervised thresholds for shape matchingPreprintinfo:eu-repo/semantics/preprintinfo:eu-repo/semantics/submittedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaMusé, PabloSur, FredericCao, FredericGousseau, YannLICENSElicense.txttext/plain4267http://localhost:8080/xmlui/bitstream/20.500.12008/21252/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_textapplication/octet-stream0http://localhost:8080/xmlui/bitstream/20.500.12008/21252/2/license_textd41d8cd98f00b204e9800998ecf8427eMD52license_urlapplication/octet-stream49http://localhost:8080/xmlui/bitstream/20.500.12008/21252/3/license_url4afdbb8c545fd630ea7db775da747b2fMD53license_rdfapplication/octet-stream0http://localhost:8080/xmlui/bitstream/20.500.12008/21252/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALunsupervised-tresholds.pdfapplication/pdf364801http://localhost:8080/xmlui/bitstream/20.500.12008/21252/1/unsupervised-tresholds.pdf73b2621378a0a5b1d5bf38f899e2de87MD5120.500.12008/212522019-11-29 14:58:57.172oai:colibri.udelar.edu.uy:20.500.12008/21252VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:33:01.962067COLIBRI - Universidad de la Repúblicafalse
spellingShingle Unsupervised thresholds for shape matching
Musé, Pablo
Visual databases
Image matching
Computer vision
status_str submittedVersion
title Unsupervised thresholds for shape matching
title_full Unsupervised thresholds for shape matching
title_fullStr Unsupervised thresholds for shape matching
title_full_unstemmed Unsupervised thresholds for shape matching
title_short Unsupervised thresholds for shape matching
title_sort Unsupervised thresholds for shape matching
topic Visual databases
Image matching
Computer vision
url https://hdl.handle.net/20.500.12008/21252