Aprendizaje profundo para la asignación de recursos en redes 5G

Inglés, Lucas

Supervisor(es): Rattaro, Claudina - Belzarena, Pablo

Resumen:

La creciente demanda de conectividad se manifiesta en la cantidad de tráfico y la tendencia a ampliar el alcance de las redes móviles para satisfacer nuevas necesidades. Las redes móviles de quinta generación (5G) se han convertido en el nuevo paradigma de las redes de comunicación con nuevas características y servicios. Estas redes deben permitir la coexistencia de clientes con diferentes requerimientos de servicio, mientras garantizan la autonomía e independencia entre ellos, lo cual constituye un desafío para la asignación de recursos. Network Slicing se presenta como la herramienta clave para abordar este problema. Implica el particionamiento de los recursos de radio con el objetivo de cumplir con el nivel de servicio acordado con cada grupo de usuarios. El objetivo general del presente trabajo es analizar e implementar algoritmos de asignación de recursos basados en aprendizaje profundo para redes 5G, bajo el paradigma de network slicing. Para ello se utiliza el simulador Py5cheSim, desarrollado en el Instituto de Ingeniería Eléctrica de UdelaR. Como resultado principal se destaca el análisis comparativo de dos algoritmos de asignación de recursos entre slices que se basan en el aprendizaje profundo y se evalúan bajo un mismo escenario operativo. Así, se analiza su potencial para ser implementados en una red real y se llega a la conclusión de que uno de ellos es la opción más adecuada. Dicha elección se fundamenta en una serie de criterios técnicos y de rendimiento, que demuestran las ventajas que ofrece en términos de eficiencia y precisión en la asignación de recursos. Por otra parte, se realizan aportes al simulador, tales como la incorporación de nuevos perfiles de tráfico, el ajuste de mecanismos de funcionamiento y la creación de una librería para facilitar el desarrollo de nuevos algoritmos. Muchos de estos aportes enriquecen los resultados principales, pues habilitan la experimentación en diversos entornos de trafico.


Detalles Bibliográficos
2023
Este trabajo se enmarcó en los proyectos de investigación “Inteligencia Artificial aplicada a redes 5G” (Agencia Nacional de Investigación e Innovación, Uruguay, Project FMV 1 2019 1 155700), “Herramientas de simulación de redes móviles de futura generación”(FVF-2021-128– DICYT, Fondo Carlos Vaz Ferreira, Convocatoria 2021, Dirección Nacional de Innovación, Ciencia y Tecnología, Ministerio de Educación y Cultura, Uruguay) y “Convergencia entre redes 5G/6G y redes ópticas: un enfoque holístico”(Proyectos de I+D 2022, Comisión Sectorial de Investigación Científica, UdelaR).
Beca ANII (POS_NAC_M_2020_1_164197) para el desarrollo de la maestría.
5G
Inteligencia artificial
Aprendizaje por refuerzo
Scheduling
Comunicaciones móviles
Español
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/36721
Acceso abierto
Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
_version_ 1807523179563843584
author Inglés, Lucas
author_facet Inglés, Lucas
author_role author
bitstream.checksum.fl_str_mv 6429389a7df7277b72b7924fdc7d47a9
a006180e3f5b2ad0b88185d14284c0e0
e8c30e04e865334cac2bfcba70aad8cb
1996b8461bc290aef6a27d78c67b6b52
ae4368b186f7535cb13ba91a7e6ef821
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/36721/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/36721/2/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/36721/3/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/36721/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/36721/1/Ing23.pdf
collection COLIBRI
dc.contributor.filiacion.none.fl_str_mv Inglés Lucas, Universidad de la República (Uruguay). Facultad de Ingeniería.
dc.creator.advisor.none.fl_str_mv Rattaro, Claudina
Belzarena, Pablo
dc.creator.none.fl_str_mv Inglés, Lucas
dc.date.accessioned.none.fl_str_mv 2023-04-14T14:52:58Z
dc.date.available.none.fl_str_mv 2023-04-14T14:52:58Z
dc.date.issued.none.fl_str_mv 2023
dc.description.abstract.none.fl_txt_mv La creciente demanda de conectividad se manifiesta en la cantidad de tráfico y la tendencia a ampliar el alcance de las redes móviles para satisfacer nuevas necesidades. Las redes móviles de quinta generación (5G) se han convertido en el nuevo paradigma de las redes de comunicación con nuevas características y servicios. Estas redes deben permitir la coexistencia de clientes con diferentes requerimientos de servicio, mientras garantizan la autonomía e independencia entre ellos, lo cual constituye un desafío para la asignación de recursos. Network Slicing se presenta como la herramienta clave para abordar este problema. Implica el particionamiento de los recursos de radio con el objetivo de cumplir con el nivel de servicio acordado con cada grupo de usuarios. El objetivo general del presente trabajo es analizar e implementar algoritmos de asignación de recursos basados en aprendizaje profundo para redes 5G, bajo el paradigma de network slicing. Para ello se utiliza el simulador Py5cheSim, desarrollado en el Instituto de Ingeniería Eléctrica de UdelaR. Como resultado principal se destaca el análisis comparativo de dos algoritmos de asignación de recursos entre slices que se basan en el aprendizaje profundo y se evalúan bajo un mismo escenario operativo. Así, se analiza su potencial para ser implementados en una red real y se llega a la conclusión de que uno de ellos es la opción más adecuada. Dicha elección se fundamenta en una serie de criterios técnicos y de rendimiento, que demuestran las ventajas que ofrece en términos de eficiencia y precisión en la asignación de recursos. Por otra parte, se realizan aportes al simulador, tales como la incorporación de nuevos perfiles de tráfico, el ajuste de mecanismos de funcionamiento y la creación de una librería para facilitar el desarrollo de nuevos algoritmos. Muchos de estos aportes enriquecen los resultados principales, pues habilitan la experimentación en diversos entornos de trafico.
dc.description.sponsorship.none.fl_txt_mv Este trabajo se enmarcó en los proyectos de investigación “Inteligencia Artificial aplicada a redes 5G” (Agencia Nacional de Investigación e Innovación, Uruguay, Project FMV 1 2019 1 155700), “Herramientas de simulación de redes móviles de futura generación”(FVF-2021-128– DICYT, Fondo Carlos Vaz Ferreira, Convocatoria 2021, Dirección Nacional de Innovación, Ciencia y Tecnología, Ministerio de Educación y Cultura, Uruguay) y “Convergencia entre redes 5G/6G y redes ópticas: un enfoque holístico”(Proyectos de I+D 2022, Comisión Sectorial de Investigación Científica, UdelaR).
Beca ANII (POS_NAC_M_2020_1_164197) para el desarrollo de la maestría.
dc.format.extent.es.fl_str_mv 109 p.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Inglés, L. Aprendizaje profundo para la asignación de recursos en redes 5G [en línea]. Tesis de maestría. Montevideo : Udelar. FI. IIE, 2023.
dc.identifier.issn.none.fl_str_mv 1688-2806
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/36721
dc.language.iso.none.fl_str_mv es
spa
dc.publisher.es.fl_str_mv Udelar.FI.
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv 5G
Inteligencia artificial
Aprendizaje por refuerzo
Scheduling
Comunicaciones móviles
dc.title.none.fl_str_mv Aprendizaje profundo para la asignación de recursos en redes 5G
dc.type.es.fl_str_mv Tesis de maestría
dc.type.none.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.none.fl_str_mv info:eu-repo/semantics/acceptedVersion
description La creciente demanda de conectividad se manifiesta en la cantidad de tráfico y la tendencia a ampliar el alcance de las redes móviles para satisfacer nuevas necesidades. Las redes móviles de quinta generación (5G) se han convertido en el nuevo paradigma de las redes de comunicación con nuevas características y servicios. Estas redes deben permitir la coexistencia de clientes con diferentes requerimientos de servicio, mientras garantizan la autonomía e independencia entre ellos, lo cual constituye un desafío para la asignación de recursos. Network Slicing se presenta como la herramienta clave para abordar este problema. Implica el particionamiento de los recursos de radio con el objetivo de cumplir con el nivel de servicio acordado con cada grupo de usuarios. El objetivo general del presente trabajo es analizar e implementar algoritmos de asignación de recursos basados en aprendizaje profundo para redes 5G, bajo el paradigma de network slicing. Para ello se utiliza el simulador Py5cheSim, desarrollado en el Instituto de Ingeniería Eléctrica de UdelaR. Como resultado principal se destaca el análisis comparativo de dos algoritmos de asignación de recursos entre slices que se basan en el aprendizaje profundo y se evalúan bajo un mismo escenario operativo. Así, se analiza su potencial para ser implementados en una red real y se llega a la conclusión de que uno de ellos es la opción más adecuada. Dicha elección se fundamenta en una serie de criterios técnicos y de rendimiento, que demuestran las ventajas que ofrece en términos de eficiencia y precisión en la asignación de recursos. Por otra parte, se realizan aportes al simulador, tales como la incorporación de nuevos perfiles de tráfico, el ajuste de mecanismos de funcionamiento y la creación de una librería para facilitar el desarrollo de nuevos algoritmos. Muchos de estos aportes enriquecen los resultados principales, pues habilitan la experimentación en diversos entornos de trafico.
eu_rights_str_mv openAccess
format masterThesis
id COLIBRI_da6a2cbda08e523eda2e421283682fd5
identifier_str_mv Inglés, L. Aprendizaje profundo para la asignación de recursos en redes 5G [en línea]. Tesis de maestría. Montevideo : Udelar. FI. IIE, 2023.
1688-2806
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language spa
language_invalid_str_mv es
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/36721
publishDate 2023
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)
spelling Inglés Lucas, Universidad de la República (Uruguay). Facultad de Ingeniería.2023-04-14T14:52:58Z2023-04-14T14:52:58Z2023Inglés, L. Aprendizaje profundo para la asignación de recursos en redes 5G [en línea]. Tesis de maestría. Montevideo : Udelar. FI. IIE, 2023.1688-2806https://hdl.handle.net/20.500.12008/36721La creciente demanda de conectividad se manifiesta en la cantidad de tráfico y la tendencia a ampliar el alcance de las redes móviles para satisfacer nuevas necesidades. Las redes móviles de quinta generación (5G) se han convertido en el nuevo paradigma de las redes de comunicación con nuevas características y servicios. Estas redes deben permitir la coexistencia de clientes con diferentes requerimientos de servicio, mientras garantizan la autonomía e independencia entre ellos, lo cual constituye un desafío para la asignación de recursos. Network Slicing se presenta como la herramienta clave para abordar este problema. Implica el particionamiento de los recursos de radio con el objetivo de cumplir con el nivel de servicio acordado con cada grupo de usuarios. El objetivo general del presente trabajo es analizar e implementar algoritmos de asignación de recursos basados en aprendizaje profundo para redes 5G, bajo el paradigma de network slicing. Para ello se utiliza el simulador Py5cheSim, desarrollado en el Instituto de Ingeniería Eléctrica de UdelaR. Como resultado principal se destaca el análisis comparativo de dos algoritmos de asignación de recursos entre slices que se basan en el aprendizaje profundo y se evalúan bajo un mismo escenario operativo. Así, se analiza su potencial para ser implementados en una red real y se llega a la conclusión de que uno de ellos es la opción más adecuada. Dicha elección se fundamenta en una serie de criterios técnicos y de rendimiento, que demuestran las ventajas que ofrece en términos de eficiencia y precisión en la asignación de recursos. Por otra parte, se realizan aportes al simulador, tales como la incorporación de nuevos perfiles de tráfico, el ajuste de mecanismos de funcionamiento y la creación de una librería para facilitar el desarrollo de nuevos algoritmos. Muchos de estos aportes enriquecen los resultados principales, pues habilitan la experimentación en diversos entornos de trafico.Submitted by Ribeiro Jorge (jribeiro@fing.edu.uy) on 2023-04-11T23:32:48Z No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Ing23.pdf: 2044637 bytes, checksum: ae4368b186f7535cb13ba91a7e6ef821 (MD5)Approved for entry into archive by Machado Jimena (jmachado@fing.edu.uy) on 2023-04-14T14:33:13Z (GMT) No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Ing23.pdf: 2044637 bytes, checksum: ae4368b186f7535cb13ba91a7e6ef821 (MD5)Made available in DSpace by Luna Fabiana (fabiana.luna@seciu.edu.uy) on 2023-04-14T14:52:58Z (GMT). No. of bitstreams: 2 license_rdf: 23149 bytes, checksum: 1996b8461bc290aef6a27d78c67b6b52 (MD5) Ing23.pdf: 2044637 bytes, checksum: ae4368b186f7535cb13ba91a7e6ef821 (MD5) Previous issue date: 2023Este trabajo se enmarcó en los proyectos de investigación “Inteligencia Artificial aplicada a redes 5G” (Agencia Nacional de Investigación e Innovación, Uruguay, Project FMV 1 2019 1 155700), “Herramientas de simulación de redes móviles de futura generación”(FVF-2021-128– DICYT, Fondo Carlos Vaz Ferreira, Convocatoria 2021, Dirección Nacional de Innovación, Ciencia y Tecnología, Ministerio de Educación y Cultura, Uruguay) y “Convergencia entre redes 5G/6G y redes ópticas: un enfoque holístico”(Proyectos de I+D 2022, Comisión Sectorial de Investigación Científica, UdelaR).Beca ANII (POS_NAC_M_2020_1_164197) para el desarrollo de la maestría.109 p.application/pdfesspaUdelar.FI.Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad de la República.(Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución - No Comercial - Sin Derivadas (CC - By-NC-ND 4.0)5GInteligencia artificialAprendizaje por refuerzoSchedulingComunicaciones móvilesAprendizaje profundo para la asignación de recursos en redes 5GTesis de maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaInglés, LucasRattaro, ClaudinaBelzarena, PabloUniversidad de la República (Uruguay). Facultad de IngenieríaMagíster en Ingeniería EléctricaLICENSElicense.txtlicense.txttext/plain; charset=utf-84267http://localhost:8080/xmlui/bitstream/20.500.12008/36721/5/license.txt6429389a7df7277b72b7924fdc7d47a9MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-850http://localhost:8080/xmlui/bitstream/20.500.12008/36721/2/license_urla006180e3f5b2ad0b88185d14284c0e0MD52license_textlicense_texttext/html; charset=utf-838782http://localhost:8080/xmlui/bitstream/20.500.12008/36721/3/license_texte8c30e04e865334cac2bfcba70aad8cbMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823149http://localhost:8080/xmlui/bitstream/20.500.12008/36721/4/license_rdf1996b8461bc290aef6a27d78c67b6b52MD54ORIGINALIng23.pdfIng23.pdfapplication/pdf2044637http://localhost:8080/xmlui/bitstream/20.500.12008/36721/1/Ing23.pdfae4368b186f7535cb13ba91a7e6ef821MD5120.500.12008/367212023-04-14 11:52:58.889oai:colibri.udelar.edu.uy:20.500.12008/36721VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDDumJsaWNhLiAoUmVzLiBOwrogOTEgZGUgQy5ELkMuIGRlIDgvSUlJLzE5OTQg4oCTIEQuTy4gNy9JVi8xOTk0KSB5ICBwb3IgbGEgT3JkZW5hbnphIGRlbCBSZXBvc2l0b3JpbyBBYmllcnRvIGRlIGxhIFVuaXZlcnNpZGFkIGRlIGxhIFJlcMO6YmxpY2EgKFJlcy4gTsK6IDE2IGRlIEMuRC5DLiBkZSAwNy8xMC8yMDE0KS4gCgpBY2VwdGFuZG8gZWwgYXV0b3IgZXN0b3MgdMOpcm1pbm9zIHkgY29uZGljaW9uZXMgZGUgZGVww7NzaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcMO6YmxpY2EgcHJvY2VkZXLDoSBhOiAgCgphKSBhcmNoaXZhciBtw6FzIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nDs24KYikgY29udmVydGlyIGxhIG9icmEgYSBvdHJvcyBmb3JtYXRvcyBzaSBmdWVyYSBuZWNlc2FyaW8gIHBhcmEgZmFjaWxpdGFyIHN1IHByZXNlcnZhY2nDs24geSBhY2Nlc2liaWxpZGFkIHNpbiBhbHRlcmFyIHN1IGNvbnRlbmlkby4KYykgcmVhbGl6YXIgbGEgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGRpc3BvbmVyIGVsIGFjY2VzbyBsaWJyZSB5IGdyYXR1aXRvIGEgdHJhdsOpcyBkZSBJbnRlcm5ldCBtZWRpYW50ZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcsOhIHNvbGljaXRhciB1biBwZXLDrW9kbyBkZSBlbWJhcmdvIHNvYnJlIGxhIGRpc3BvbmliaWxpZGFkIHDDumJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFyw6EgYSBwYXJ0aXIgZGUgbGEgYWNlcHRhY2nDs24gZGUgZXN0ZSBkb2N1bWVudG8geSBoYXN0YSBsYSBmZWNoYSBxdWUgaW5kaXF1ZSAuCgpFbCBhdXRvciBhc2VndXJhIHF1ZSBsYSBvYnJhIG5vIGluZnJpZ2UgbmluZ8O6biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIHkgcmVjb25vY2lkbyBlbiBlbCB0ZXh0byBvIGNvbnRlbmlkbyBkZWwgZG9jdW1lbnRvIGRlcG9zaXRhZG8gZW4gZWwgUmVwb3NpdG9yaW8uCgpFbiBvYnJhcyBkZSBhdXRvcsOtYSBtw7psdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDDqXN0ZSBlbCDDum5pY28gcmVzcG9uc2FibGUgZnJlbnRlIGEgY3VhbHF1aWVyIHRpcG8gZGUgcmVjbGFtYWNpw7NuIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLDoSByZXNwb25zYWJsZSBkZWwgY29udGVuaWRvIGRlIGxvcyBkb2N1bWVudG9zIHF1ZSBkZXBvc2l0YS4gTGEgVURFTEFSIG5vIHNlcsOhIHJlc3BvbnNhYmxlIHBvciBsYXMgZXZlbnR1YWxlcyB2aW9sYWNpb25lcyBhbCBkZXJlY2hvIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCBlbiBxdWUgcHVlZGEgaW5jdXJyaXIgZWwgYXV0b3IuCgpBbnRlIGN1YWxxdWllciBkZW51bmNpYSBkZSB2aW9sYWNpw7NuIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFyw6EgdG9kYXMgbGFzIG1lZGlkYXMgbmVjZXNhcmlhcyBwYXJhIGV2aXRhciBsYSBjb250aW51YWNpw7NuIGRlIGRpY2hhIGluZnJhY2Npw7NuLCBsYXMgcXVlIHBvZHLDoW4gaW5jbHVpciBlbCByZXRpcm8gZGVsIGFjY2VzbyBhIGxvcyBjb250ZW5pZG9zIHkvbyBtZXRhZGF0b3MgZGVsIGRvY3VtZW50byByZXNwZWN0aXZvLgoKTGEgb2JyYSBzZSBwb25kcsOhIGEgZGlzcG9zaWNpw7NuIGRlbCBww7pibGljbyBhIHRyYXbDqXMgZGUgbGFzIGxpY2VuY2lhcyBDcmVhdGl2ZSBDb21tb25zLCBlbCBhdXRvciBwb2Ryw6Egc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjacOzbiAoQ0MgLSBCeSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBzaWVtcHJlIHF1ZSBzZSByZWNvbm96Y2EgYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgQ29tcGFydGlyIElndWFsIChDQyAtIEJ5LVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgaW5jbHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIHBlcm8gbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIChDQyAtIEJ5LU5DKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzLCByZWNvbm9jaWVuZG8gYWwgYXV0b3IuCgpBdHJpYnVjacOzbiDigJMgU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNpw7NuIOKAkyBObyBDb21lcmNpYWwg4oCTIENvbXBhcnRpciBJZ3VhbCAoQ0Mg4oCTIEJ5LU5DLVNBKTogUGVybWl0ZSB1c2FyIGxhIG9icmEgeSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcywgc2llbXByZSB5IGN1YW5kbyBlc29zIHVzb3Mgbm8gdGVuZ2FuIGZpbmVzIGNvbWVyY2lhbGVzIHkgbGEgZGlzdHJpYnVjacOzbiBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIHNlIGhhZ2EgbWVkaWFudGUgbGljZW5jaWEgaWTDqW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjacOzbiDigJMgTm8gQ29tZXJjaWFsIOKAkyBTaW4gRGVyaXZhZGFzIChDQyAtIEJ5LU5DLU5EKTogUGVybWl0ZSB1c2FyIGxhIG9icmEsIHBlcm8gbm8gc2UgcGVybWl0ZSBnZW5lcmFyIG9icmFzIGRlcml2YWRhcyB5IG5vIHNlIHBlcm1pdGUgdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgZGViaWVuZG8gcmVjb25vY2VyIGFsIGF1dG9yLgoKTG9zIHVzb3MgcHJldmlzdG9zIGVuIGxhcyBsaWNlbmNpYXMgaW5jbHV5ZW4gbGEgZW5hamVuYWNpw7NuLCByZXByb2R1Y2Npw7NuLCBjb211bmljYWNpw7NuLCBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24geSBwdWVzdGEgYSBkaXNwb3NpY2nDs24gZGVsIHDDumJsaWNvLiBMYSBjcmVhY2nDs24gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nDs24sIHRyYWR1Y2Npw7NuIHkgZWwgcmVtaXguCgpDdWFuZG8gc2Ugc2VsZWNjaW9uZSB1bmEgbGljZW5jaWEgcXVlIGhhYmlsaXRlIHVzb3MgY29tZXJjaWFsZXMsIGVsIGRlcMOzc2l0byBkZWJlcsOhIHNlciBhY29tcGHDsWFkbyBkZWwgYXZhbCBkZWwgamVyYXJjYSBtw6F4aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCg==Universidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:44:18.895011COLIBRI - Universidad de la Repúblicafalse
spellingShingle Aprendizaje profundo para la asignación de recursos en redes 5G
Inglés, Lucas
5G
Inteligencia artificial
Aprendizaje por refuerzo
Scheduling
Comunicaciones móviles
status_str acceptedVersion
title Aprendizaje profundo para la asignación de recursos en redes 5G
title_full Aprendizaje profundo para la asignación de recursos en redes 5G
title_fullStr Aprendizaje profundo para la asignación de recursos en redes 5G
title_full_unstemmed Aprendizaje profundo para la asignación de recursos en redes 5G
title_short Aprendizaje profundo para la asignación de recursos en redes 5G
title_sort Aprendizaje profundo para la asignación de recursos en redes 5G
topic 5G
Inteligencia artificial
Aprendizaje por refuerzo
Scheduling
Comunicaciones móviles
url https://hdl.handle.net/20.500.12008/36721