Detection of low dimensionality and data denoising via set estimation techniques
Resumen:
This work is closely related to the theories of set estimation and manifold estimation. Our object of interest is a, possibly lower-dimensional, compact set S ⊂ ℝd. The general aim is to identify (via stochastic procedures) some qualitative or quantitative features of S, of geometric or topological character. The available information is just a random sample of points drawn on S. The term “to identify” means here to achieve a correct answer almost surely (a.s.) when the sample size tends to infinity. More specifically the paper aims at giving some partial answers to the following questions: is S full dimensional? Is S “close to a lower dimensional set” M? If so, can we estimate M or some functionals of M (in particular, the Minkowski content of M)? As an important auxiliary tool in the answers of these questions, a denoising procedure is proposed in order to partially remove the noise in the original data. The theoretical results are complemented with some simulations and graphical illustrations. © 2017, Institute of Mathematical Statistics.
2017 | |
Boundary estimation Denoising procedure Minkowski content |
|
Inglés | |
Universidad de la República | |
COLIBRI | |
https://hdl.handle.net/20.500.12008/22092 | |
Acceso abierto | |
Licencia Creative Commons Atribución (CC –BY 4.0) |
_version_ | 1807522781354524672 |
---|---|
author | Aaron, Catherine |
author2 | Cholaquidis, Alejandro Cuevas, A. |
author2_role | author author |
author_facet | Aaron, Catherine Cholaquidis, Alejandro Cuevas, A. |
author_role | author |
bitstream.checksum.fl_str_mv | 7f2e2c17ef6585de66da58d1bfa8b5e1 4fe6ac477f5a2df0424a5ff1a9bf000c a0ebbeafb9d2ec7cbb19d7137ebc392c bc1bc9659a4a06e9516479a5adfd8b0e a188d0798ae96562065fc869afe97d13 |
bitstream.checksumAlgorithm.fl_str_mv | MD5 MD5 MD5 MD5 MD5 |
bitstream.url.fl_str_mv | http://localhost:8080/xmlui/bitstream/20.500.12008/22092/5/license.txt http://localhost:8080/xmlui/bitstream/20.500.12008/22092/2/license_text http://localhost:8080/xmlui/bitstream/20.500.12008/22092/3/license_url http://localhost:8080/xmlui/bitstream/20.500.12008/22092/4/license_rdf http://localhost:8080/xmlui/bitstream/20.500.12008/22092/1/10121417EJS1370.pdf |
collection | COLIBRI |
dc.contributor.filiacion.es.fl_str_mv | Cholaquidis, Alejandro. Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Matemática |
dc.creator.none.fl_str_mv | Aaron, Catherine Cholaquidis, Alejandro Cuevas, A. |
dc.date.accessioned.none.fl_str_mv | 2019-10-02T22:14:51Z |
dc.date.available.none.fl_str_mv | 2019-10-02T22:14:51Z |
dc.date.issued.es.fl_str_mv | 2017 |
dc.date.submitted.es.fl_str_mv | 20191001 |
dc.description.abstract.none.fl_txt_mv | This work is closely related to the theories of set estimation and manifold estimation. Our object of interest is a, possibly lower-dimensional, compact set S ⊂ ℝd. The general aim is to identify (via stochastic procedures) some qualitative or quantitative features of S, of geometric or topological character. The available information is just a random sample of points drawn on S. The term “to identify” means here to achieve a correct answer almost surely (a.s.) when the sample size tends to infinity. More specifically the paper aims at giving some partial answers to the following questions: is S full dimensional? Is S “close to a lower dimensional set” M? If so, can we estimate M or some functionals of M (in particular, the Minkowski content of M)? As an important auxiliary tool in the answers of these questions, a denoising procedure is proposed in order to partially remove the noise in the original data. The theoretical results are complemented with some simulations and graphical illustrations. © 2017, Institute of Mathematical Statistics. |
dc.format.mimetype.es.fl_str_mv | application/pdf |
dc.identifier.citation.es.fl_str_mv | Aaron, C.,Cholaquidis, A., Cuevas, A.Detection of low dimensionality and data denoising via set estimation techniques. Electronic Journal of Statistics, 2017, 11 (2): 4596-4628.doi: 10.1214/17-EJS1370 |
dc.identifier.doi.es.fl_str_mv | 10.1214/17-EJS1370 |
dc.identifier.issn.es.fl_str_mv | 1935-7524 |
dc.identifier.uri.none.fl_str_mv | https://hdl.handle.net/20.500.12008/22092 |
dc.language.iso.none.fl_str_mv | en eng |
dc.publisher.es.fl_str_mv | Institute of Mathematical Statistics |
dc.relation.ispartof.es.fl_str_mv | Electronic Journal of Statistics, 2017, 11 (2): 4596-4628 |
dc.rights.license.none.fl_str_mv | Licencia Creative Commons Atribución (CC –BY 4.0) |
dc.rights.none.fl_str_mv | info:eu-repo/semantics/openAccess |
dc.source.none.fl_str_mv | reponame:COLIBRI instname:Universidad de la República instacron:Universidad de la República |
dc.subject.es.fl_str_mv | Boundary estimation Denoising procedure Minkowski content |
dc.title.none.fl_str_mv | Detection of low dimensionality and data denoising via set estimation techniques |
dc.type.es.fl_str_mv | Artículo |
dc.type.none.fl_str_mv | info:eu-repo/semantics/article |
dc.type.version.none.fl_str_mv | info:eu-repo/semantics/publishedVersion |
description | This work is closely related to the theories of set estimation and manifold estimation. Our object of interest is a, possibly lower-dimensional, compact set S ⊂ ℝd. The general aim is to identify (via stochastic procedures) some qualitative or quantitative features of S, of geometric or topological character. The available information is just a random sample of points drawn on S. The term “to identify” means here to achieve a correct answer almost surely (a.s.) when the sample size tends to infinity. More specifically the paper aims at giving some partial answers to the following questions: is S full dimensional? Is S “close to a lower dimensional set” M? If so, can we estimate M or some functionals of M (in particular, the Minkowski content of M)? As an important auxiliary tool in the answers of these questions, a denoising procedure is proposed in order to partially remove the noise in the original data. The theoretical results are complemented with some simulations and graphical illustrations. © 2017, Institute of Mathematical Statistics. |
eu_rights_str_mv | openAccess |
format | article |
id | COLIBRI_d6bed7e7de1353d0291e219f61d13041 |
identifier_str_mv | Aaron, C.,Cholaquidis, A., Cuevas, A.Detection of low dimensionality and data denoising via set estimation techniques. Electronic Journal of Statistics, 2017, 11 (2): 4596-4628.doi: 10.1214/17-EJS1370 1935-7524 10.1214/17-EJS1370 |
instacron_str | Universidad de la República |
institution | Universidad de la República |
instname_str | Universidad de la República |
language | eng |
language_invalid_str_mv | en |
network_acronym_str | COLIBRI |
network_name_str | COLIBRI |
oai_identifier_str | oai:colibri.udelar.edu.uy:20.500.12008/22092 |
publishDate | 2017 |
reponame_str | COLIBRI |
repository.mail.fl_str_mv | mabel.seroubian@seciu.edu.uy |
repository.name.fl_str_mv | COLIBRI - Universidad de la República |
repository_id_str | 4771 |
rights_invalid_str_mv | Licencia Creative Commons Atribución (CC –BY 4.0) |
spelling | Cholaquidis, Alejandro. Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Matemática2019-10-02T22:14:51Z2019-10-02T22:14:51Z201720191001Aaron, C.,Cholaquidis, A., Cuevas, A.Detection of low dimensionality and data denoising via set estimation techniques. Electronic Journal of Statistics, 2017, 11 (2): 4596-4628.doi: 10.1214/17-EJS13701935-7524https://hdl.handle.net/20.500.12008/2209210.1214/17-EJS1370This work is closely related to the theories of set estimation and manifold estimation. Our object of interest is a, possibly lower-dimensional, compact set S ⊂ ℝd. The general aim is to identify (via stochastic procedures) some qualitative or quantitative features of S, of geometric or topological character. The available information is just a random sample of points drawn on S. The term “to identify” means here to achieve a correct answer almost surely (a.s.) when the sample size tends to infinity. More specifically the paper aims at giving some partial answers to the following questions: is S full dimensional? Is S “close to a lower dimensional set” M? If so, can we estimate M or some functionals of M (in particular, the Minkowski content of M)? As an important auxiliary tool in the answers of these questions, a denoising procedure is proposed in order to partially remove the noise in the original data. The theoretical results are complemented with some simulations and graphical illustrations. © 2017, Institute of Mathematical Statistics.Made available in DSpace on 2019-10-02T22:14:51Z (GMT). No. of bitstreams: 5 10121417EJS1370.pdf: 7765242 bytes, checksum: a188d0798ae96562065fc869afe97d13 (MD5) license_text: 38297 bytes, checksum: 4fe6ac477f5a2df0424a5ff1a9bf000c (MD5) license_url: 44 bytes, checksum: a0ebbeafb9d2ec7cbb19d7137ebc392c (MD5) license_rdf: 8067 bytes, checksum: bc1bc9659a4a06e9516479a5adfd8b0e (MD5) license.txt: 4194 bytes, checksum: 7f2e2c17ef6585de66da58d1bfa8b5e1 (MD5) Previous issue date: 2017application/pdfenengInstitute of Mathematical StatisticsElectronic Journal of Statistics, 2017, 11 (2): 4596-4628Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución (CC –BY 4.0)Boundary estimationDenoising procedureMinkowski contentDetection of low dimensionality and data denoising via set estimation techniquesArtículoinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaAaron, CatherineCholaquidis, AlejandroCuevas, A.LICENSElicense.txttext/plain4194http://localhost:8080/xmlui/bitstream/20.500.12008/22092/5/license.txt7f2e2c17ef6585de66da58d1bfa8b5e1MD55CC-LICENSElicense_textapplication/octet-stream38297http://localhost:8080/xmlui/bitstream/20.500.12008/22092/2/license_text4fe6ac477f5a2df0424a5ff1a9bf000cMD52license_urlapplication/octet-stream44http://localhost:8080/xmlui/bitstream/20.500.12008/22092/3/license_urla0ebbeafb9d2ec7cbb19d7137ebc392cMD53license_rdfapplication/octet-stream8067http://localhost:8080/xmlui/bitstream/20.500.12008/22092/4/license_rdfbc1bc9659a4a06e9516479a5adfd8b0eMD54ORIGINAL10121417EJS1370.pdfapplication/pdf7765242http://localhost:8080/xmlui/bitstream/20.500.12008/22092/1/10121417EJS1370.pdfa188d0798ae96562065fc869afe97d13MD5120.500.12008/220922023-06-08 09:04:44.373oai:colibri.udelar.edu.uy:20.500.12008/22092VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDvv71ibGljYS4gKFJlcy4gTu+/vSA5MSBkZSBDLkQuQy4gZGUgOC9JSUkvMTk5NCDvv70gRC5PLiA3L0lWLzE5OTQpIHkgIHBvciBsYSBPcmRlbmFuemEgZGVsIFJlcG9zaXRvcmlvIEFiaWVydG8gZGUgbGEgVW5pdmVyc2lkYWQgZGUgbGEgUmVw77+9YmxpY2EgKFJlcy4gTu+/vSAxNiBkZSBDLkQuQy4gZGUgMDcvMTAvMjAxNCkuIAoKQWNlcHRhbmRvIGVsIGF1dG9yIGVzdG9zIHTvv71ybWlub3MgeSBjb25kaWNpb25lcyBkZSBkZXDvv71zaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcO+/vWJsaWNhIHByb2NlZGVy77+9IGE6ICAKCmEpIGFyY2hpdmFyIG3vv71zIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nvv71uCmIpIGNvbnZlcnRpciBsYSBvYnJhIGEgb3Ryb3MgZm9ybWF0b3Mgc2kgZnVlcmEgbmVjZXNhcmlvICBwYXJhIGZhY2lsaXRhciBzdSBwcmVzZXJ2YWNp77+9biB5IGFjY2VzaWJpbGlkYWQgc2luIGFsdGVyYXIgc3UgY29udGVuaWRvLgpjKSByZWFsaXphciBsYSBjb211bmljYWNp77+9biBw77+9YmxpY2EgeSBkaXNwb25lciBlbCBhY2Nlc28gbGlicmUgeSBncmF0dWl0byBhIHRyYXbvv71zIGRlIEludGVybmV0IG1lZGlhbnRlIGxhIHB1YmxpY2Fjae+/vW4gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcu+/vSBzb2xpY2l0YXIgdW4gcGVy77+9b2RvIGRlIGVtYmFyZ28gc29icmUgbGEgZGlzcG9uaWJpbGlkYWQgcO+/vWJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFy77+9IGEgcGFydGlyIGRlIGxhIGFjZXB0YWNp77+9biBkZSBlc3RlIGRvY3VtZW50byB5IGhhc3RhIGxhIGZlY2hhIHF1ZSBpbmRpcXVlIC4KCkVsIGF1dG9yIGFzZWd1cmEgcXVlIGxhIG9icmEgbm8gaW5mcmlnZSBuaW5n77+9biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdO+/vSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyB5IHJlY29ub2NpZG8gZW4gZWwgdGV4dG8gbyBjb250ZW5pZG8gZGVsIGRvY3VtZW50byBkZXBvc2l0YWRvIGVuIGVsIFJlcG9zaXRvcmlvLgoKRW4gb2JyYXMgZGUgYXV0b3Lvv71hIG3vv71sdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDvv71zdGUgZWwg77+9bmljbyByZXNwb25zYWJsZSBmcmVudGUgYSBjdWFscXVpZXIgdGlwbyBkZSByZWNsYW1hY2nvv71uIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLvv70gcmVzcG9uc2FibGUgZGVsIGNvbnRlbmlkbyBkZSBsb3MgZG9jdW1lbnRvcyBxdWUgZGVwb3NpdGEuIExhIFVERUxBUiBubyBzZXLvv70gcmVzcG9uc2FibGUgcG9yIGxhcyBldmVudHVhbGVzIHZpb2xhY2lvbmVzIGFsIGRlcmVjaG8gZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIHF1ZSBwdWVkYSBpbmN1cnJpciBlbCBhdXRvci4KCkFudGUgY3VhbHF1aWVyIGRlbnVuY2lhIGRlIHZpb2xhY2nvv71uIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFy77+9IHRvZGFzIGxhcyBtZWRpZGFzIG5lY2VzYXJpYXMgcGFyYSBldml0YXIgbGEgY29udGludWFjae+/vW4gZGUgZGljaGEgaW5mcmFjY2nvv71uLCBsYXMgcXVlIHBvZHLvv71uIGluY2x1aXIgZWwgcmV0aXJvIGRlbCBhY2Nlc28gYSBsb3MgY29udGVuaWRvcyB5L28gbWV0YWRhdG9zIGRlbCBkb2N1bWVudG8gcmVzcGVjdGl2by4KCkxhIG9icmEgc2UgcG9uZHLvv70gYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28gYSB0cmF277+9cyBkZSBsYXMgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMsIGVsIGF1dG9yIHBvZHLvv70gc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjae+/vW4gKENDIC0gQnkpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgc2llbXByZSBxdWUgc2UgcmVjb25vemNhIGFsIGF1dG9yLgoKQXRyaWJ1Y2nvv71uIO+/vSBDb21wYXJ0aXIgSWd1YWwgKENDIC0gQnktU0EpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgcGVybyBsYSBkaXN0cmlidWNp77+9biBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTvv71udGljYSBhIGxhIGRlIGxhIG9icmEgb3JpZ2luYWwsIHJlY29ub2NpZW5kbyBhIGxvcyBhdXRvcmVzLgoKQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwgKENDIC0gQnktTkMpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBzaWVtcHJlIHkgY3VhbmRvIGVzb3MgdXNvcyBubyB0ZW5nYW4gZmluZXMgY29tZXJjaWFsZXMsIHJlY29ub2NpZW5kbyBhbCBhdXRvci4KCkF0cmlidWNp77+9biDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNp77+9biDvv70gTm8gQ29tZXJjaWFsIO+/vSBDb21wYXJ0aXIgSWd1YWwgKENDIO+/vSBCeS1OQy1TQSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIHNpZW1wcmUgeSBjdWFuZG8gZXNvcyB1c29zIG5vIHRlbmdhbiBmaW5lcyBjb21lcmNpYWxlcyB5IGxhIGRpc3RyaWJ1Y2nvv71uIGRlIGxhcyBvYnJhcyBkZXJpdmFkYXMgc2UgaGFnYSBtZWRpYW50ZSBsaWNlbmNpYSBpZO+/vW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjae+/vW4g77+9IE5vIENvbWVyY2lhbCDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1OQy1ORCk6IFBlcm1pdGUgdXNhciBsYSBvYnJhLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMgeSBubyBzZSBwZXJtaXRlIHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkxvcyB1c29zIHByZXZpc3RvcyBlbiBsYXMgbGljZW5jaWFzIGluY2x1eWVuIGxhIGVuYWplbmFjae+/vW4sIHJlcHJvZHVjY2nvv71uLCBjb211bmljYWNp77+9biwgcHVibGljYWNp77+9biwgZGlzdHJpYnVjae+/vW4geSBwdWVzdGEgYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28uIExhIGNyZWFjae+/vW4gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nvv71uLCB0cmFkdWNjae+/vW4geSBlbCByZW1peC4KCkN1YW5kbyBzZSBzZWxlY2Npb25lIHVuYSBsaWNlbmNpYSBxdWUgaGFiaWxpdGUgdXNvcyBjb21lcmNpYWxlcywgZWwgZGVw77+9c2l0byBkZWJlcu+/vSBzZXIgYWNvbXBh77+9YWRvIGRlbCBhdmFsIGRlbCBqZXJhcmNhIG3vv714aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCgoKCgoKCgoKUniversidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:28:11.938095COLIBRI - Universidad de la Repúblicafalse |
spellingShingle | Detection of low dimensionality and data denoising via set estimation techniques Aaron, Catherine Boundary estimation Denoising procedure Minkowski content |
status_str | publishedVersion |
title | Detection of low dimensionality and data denoising via set estimation techniques |
title_full | Detection of low dimensionality and data denoising via set estimation techniques |
title_fullStr | Detection of low dimensionality and data denoising via set estimation techniques |
title_full_unstemmed | Detection of low dimensionality and data denoising via set estimation techniques |
title_short | Detection of low dimensionality and data denoising via set estimation techniques |
title_sort | Detection of low dimensionality and data denoising via set estimation techniques |
topic | Boundary estimation Denoising procedure Minkowski content |
url | https://hdl.handle.net/20.500.12008/22092 |