Detection of low dimensionality and data denoising via set estimation techniques

Aaron, Catherine - Cholaquidis, Alejandro - Cuevas, A.

Resumen:

This work is closely related to the theories of set estimation and manifold estimation. Our object of interest is a, possibly lower-dimensional, compact set S ⊂ ℝd. The general aim is to identify (via stochastic procedures) some qualitative or quantitative features of S, of geometric or topological character. The available information is just a random sample of points drawn on S. The term “to identify” means here to achieve a correct answer almost surely (a.s.) when the sample size tends to infinity. More specifically the paper aims at giving some partial answers to the following questions: is S full dimensional? Is S “close to a lower dimensional set” M? If so, can we estimate M or some functionals of M (in particular, the Minkowski content of M)? As an important auxiliary tool in the answers of these questions, a denoising procedure is proposed in order to partially remove the noise in the original data. The theoretical results are complemented with some simulations and graphical illustrations. © 2017, Institute of Mathematical Statistics.


Detalles Bibliográficos
2017
Boundary estimation
Denoising procedure
Minkowski content
Inglés
Universidad de la República
COLIBRI
https://hdl.handle.net/20.500.12008/22092
Acceso abierto
Licencia Creative Commons Atribución (CC –BY 4.0)
_version_ 1807522781354524672
author Aaron, Catherine
author2 Cholaquidis, Alejandro
Cuevas, A.
author2_role author
author
author_facet Aaron, Catherine
Cholaquidis, Alejandro
Cuevas, A.
author_role author
bitstream.checksum.fl_str_mv 7f2e2c17ef6585de66da58d1bfa8b5e1
4fe6ac477f5a2df0424a5ff1a9bf000c
a0ebbeafb9d2ec7cbb19d7137ebc392c
bc1bc9659a4a06e9516479a5adfd8b0e
a188d0798ae96562065fc869afe97d13
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
bitstream.url.fl_str_mv http://localhost:8080/xmlui/bitstream/20.500.12008/22092/5/license.txt
http://localhost:8080/xmlui/bitstream/20.500.12008/22092/2/license_text
http://localhost:8080/xmlui/bitstream/20.500.12008/22092/3/license_url
http://localhost:8080/xmlui/bitstream/20.500.12008/22092/4/license_rdf
http://localhost:8080/xmlui/bitstream/20.500.12008/22092/1/10121417EJS1370.pdf
collection COLIBRI
dc.contributor.filiacion.es.fl_str_mv Cholaquidis, Alejandro. Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Matemática
dc.creator.none.fl_str_mv Aaron, Catherine
Cholaquidis, Alejandro
Cuevas, A.
dc.date.accessioned.none.fl_str_mv 2019-10-02T22:14:51Z
dc.date.available.none.fl_str_mv 2019-10-02T22:14:51Z
dc.date.issued.es.fl_str_mv 2017
dc.date.submitted.es.fl_str_mv 20191001
dc.description.abstract.none.fl_txt_mv This work is closely related to the theories of set estimation and manifold estimation. Our object of interest is a, possibly lower-dimensional, compact set S ⊂ ℝd. The general aim is to identify (via stochastic procedures) some qualitative or quantitative features of S, of geometric or topological character. The available information is just a random sample of points drawn on S. The term “to identify” means here to achieve a correct answer almost surely (a.s.) when the sample size tends to infinity. More specifically the paper aims at giving some partial answers to the following questions: is S full dimensional? Is S “close to a lower dimensional set” M? If so, can we estimate M or some functionals of M (in particular, the Minkowski content of M)? As an important auxiliary tool in the answers of these questions, a denoising procedure is proposed in order to partially remove the noise in the original data. The theoretical results are complemented with some simulations and graphical illustrations. © 2017, Institute of Mathematical Statistics.
dc.format.mimetype.es.fl_str_mv application/pdf
dc.identifier.citation.es.fl_str_mv Aaron, C.,Cholaquidis, A., Cuevas, A.Detection of low dimensionality and data denoising via set estimation techniques. Electronic Journal of Statistics, 2017, 11 (2): 4596-4628.doi: 10.1214/17-EJS1370
dc.identifier.doi.es.fl_str_mv 10.1214/17-EJS1370
dc.identifier.issn.es.fl_str_mv 1935-7524
dc.identifier.uri.none.fl_str_mv https://hdl.handle.net/20.500.12008/22092
dc.language.iso.none.fl_str_mv en
eng
dc.publisher.es.fl_str_mv Institute of Mathematical Statistics
dc.relation.ispartof.es.fl_str_mv Electronic Journal of Statistics, 2017, 11 (2): 4596-4628
dc.rights.license.none.fl_str_mv Licencia Creative Commons Atribución (CC –BY 4.0)
dc.rights.none.fl_str_mv info:eu-repo/semantics/openAccess
dc.source.none.fl_str_mv reponame:COLIBRI
instname:Universidad de la República
instacron:Universidad de la República
dc.subject.es.fl_str_mv Boundary estimation
Denoising procedure
Minkowski content
dc.title.none.fl_str_mv Detection of low dimensionality and data denoising via set estimation techniques
dc.type.es.fl_str_mv Artículo
dc.type.none.fl_str_mv info:eu-repo/semantics/article
dc.type.version.none.fl_str_mv info:eu-repo/semantics/publishedVersion
description This work is closely related to the theories of set estimation and manifold estimation. Our object of interest is a, possibly lower-dimensional, compact set S ⊂ ℝd. The general aim is to identify (via stochastic procedures) some qualitative or quantitative features of S, of geometric or topological character. The available information is just a random sample of points drawn on S. The term “to identify” means here to achieve a correct answer almost surely (a.s.) when the sample size tends to infinity. More specifically the paper aims at giving some partial answers to the following questions: is S full dimensional? Is S “close to a lower dimensional set” M? If so, can we estimate M or some functionals of M (in particular, the Minkowski content of M)? As an important auxiliary tool in the answers of these questions, a denoising procedure is proposed in order to partially remove the noise in the original data. The theoretical results are complemented with some simulations and graphical illustrations. © 2017, Institute of Mathematical Statistics.
eu_rights_str_mv openAccess
format article
id COLIBRI_d6bed7e7de1353d0291e219f61d13041
identifier_str_mv Aaron, C.,Cholaquidis, A., Cuevas, A.Detection of low dimensionality and data denoising via set estimation techniques. Electronic Journal of Statistics, 2017, 11 (2): 4596-4628.doi: 10.1214/17-EJS1370
1935-7524
10.1214/17-EJS1370
instacron_str Universidad de la República
institution Universidad de la República
instname_str Universidad de la República
language eng
language_invalid_str_mv en
network_acronym_str COLIBRI
network_name_str COLIBRI
oai_identifier_str oai:colibri.udelar.edu.uy:20.500.12008/22092
publishDate 2017
reponame_str COLIBRI
repository.mail.fl_str_mv mabel.seroubian@seciu.edu.uy
repository.name.fl_str_mv COLIBRI - Universidad de la República
repository_id_str 4771
rights_invalid_str_mv Licencia Creative Commons Atribución (CC –BY 4.0)
spelling Cholaquidis, Alejandro. Universidad de la República (Uruguay). Facultad de Ciencias. Instituto de Matemática2019-10-02T22:14:51Z2019-10-02T22:14:51Z201720191001Aaron, C.,Cholaquidis, A., Cuevas, A.Detection of low dimensionality and data denoising via set estimation techniques. Electronic Journal of Statistics, 2017, 11 (2): 4596-4628.doi: 10.1214/17-EJS13701935-7524https://hdl.handle.net/20.500.12008/2209210.1214/17-EJS1370This work is closely related to the theories of set estimation and manifold estimation. Our object of interest is a, possibly lower-dimensional, compact set S ⊂ ℝd. The general aim is to identify (via stochastic procedures) some qualitative or quantitative features of S, of geometric or topological character. The available information is just a random sample of points drawn on S. The term “to identify” means here to achieve a correct answer almost surely (a.s.) when the sample size tends to infinity. More specifically the paper aims at giving some partial answers to the following questions: is S full dimensional? Is S “close to a lower dimensional set” M? If so, can we estimate M or some functionals of M (in particular, the Minkowski content of M)? As an important auxiliary tool in the answers of these questions, a denoising procedure is proposed in order to partially remove the noise in the original data. The theoretical results are complemented with some simulations and graphical illustrations. © 2017, Institute of Mathematical Statistics.Made available in DSpace on 2019-10-02T22:14:51Z (GMT). No. of bitstreams: 5 10121417EJS1370.pdf: 7765242 bytes, checksum: a188d0798ae96562065fc869afe97d13 (MD5) license_text: 38297 bytes, checksum: 4fe6ac477f5a2df0424a5ff1a9bf000c (MD5) license_url: 44 bytes, checksum: a0ebbeafb9d2ec7cbb19d7137ebc392c (MD5) license_rdf: 8067 bytes, checksum: bc1bc9659a4a06e9516479a5adfd8b0e (MD5) license.txt: 4194 bytes, checksum: 7f2e2c17ef6585de66da58d1bfa8b5e1 (MD5) Previous issue date: 2017application/pdfenengInstitute of Mathematical StatisticsElectronic Journal of Statistics, 2017, 11 (2): 4596-4628Las obras depositadas en el Repositorio se rigen por la Ordenanza de los Derechos de la Propiedad Intelectual de la Universidad De La República. (Res. Nº 91 de C.D.C. de 8/III/1994 – D.O. 7/IV/1994) y por la Ordenanza del Repositorio Abierto de la Universidad de la República (Res. Nº 16 de C.D.C. de 07/10/2014)info:eu-repo/semantics/openAccessLicencia Creative Commons Atribución (CC –BY 4.0)Boundary estimationDenoising procedureMinkowski contentDetection of low dimensionality and data denoising via set estimation techniquesArtículoinfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionreponame:COLIBRIinstname:Universidad de la Repúblicainstacron:Universidad de la RepúblicaAaron, CatherineCholaquidis, AlejandroCuevas, A.LICENSElicense.txttext/plain4194http://localhost:8080/xmlui/bitstream/20.500.12008/22092/5/license.txt7f2e2c17ef6585de66da58d1bfa8b5e1MD55CC-LICENSElicense_textapplication/octet-stream38297http://localhost:8080/xmlui/bitstream/20.500.12008/22092/2/license_text4fe6ac477f5a2df0424a5ff1a9bf000cMD52license_urlapplication/octet-stream44http://localhost:8080/xmlui/bitstream/20.500.12008/22092/3/license_urla0ebbeafb9d2ec7cbb19d7137ebc392cMD53license_rdfapplication/octet-stream8067http://localhost:8080/xmlui/bitstream/20.500.12008/22092/4/license_rdfbc1bc9659a4a06e9516479a5adfd8b0eMD54ORIGINAL10121417EJS1370.pdfapplication/pdf7765242http://localhost:8080/xmlui/bitstream/20.500.12008/22092/1/10121417EJS1370.pdfa188d0798ae96562065fc869afe97d13MD5120.500.12008/220922023-06-08 09:04:44.373oai:colibri.udelar.edu.uy:20.500.12008/22092VGVybWlub3MgeSBjb25kaWNpb25lcyByZWxhdGl2YXMgYWwgZGVwb3NpdG8gZGUgb2JyYXMKCgpMYXMgb2JyYXMgZGVwb3NpdGFkYXMgZW4gZWwgUmVwb3NpdG9yaW8gc2UgcmlnZW4gcG9yIGxhIE9yZGVuYW56YSBkZSBsb3MgRGVyZWNob3MgZGUgbGEgUHJvcGllZGFkIEludGVsZWN0dWFsICBkZSBsYSBVbml2ZXJzaWRhZCBEZSBMYSBSZXDvv71ibGljYS4gKFJlcy4gTu+/vSA5MSBkZSBDLkQuQy4gZGUgOC9JSUkvMTk5NCDvv70gRC5PLiA3L0lWLzE5OTQpIHkgIHBvciBsYSBPcmRlbmFuemEgZGVsIFJlcG9zaXRvcmlvIEFiaWVydG8gZGUgbGEgVW5pdmVyc2lkYWQgZGUgbGEgUmVw77+9YmxpY2EgKFJlcy4gTu+/vSAxNiBkZSBDLkQuQy4gZGUgMDcvMTAvMjAxNCkuIAoKQWNlcHRhbmRvIGVsIGF1dG9yIGVzdG9zIHTvv71ybWlub3MgeSBjb25kaWNpb25lcyBkZSBkZXDvv71zaXRvIGVuIENPTElCUkksIGxhIFVuaXZlcnNpZGFkIGRlIFJlcO+/vWJsaWNhIHByb2NlZGVy77+9IGE6ICAKCmEpIGFyY2hpdmFyIG3vv71zIGRlIHVuYSBjb3BpYSBkZSBsYSBvYnJhIGVuIGxvcyBzZXJ2aWRvcmVzIGRlIGxhIFVuaXZlcnNpZGFkIGEgbG9zIGVmZWN0b3MgZGUgZ2FyYW50aXphciBhY2Nlc28sIHNlZ3VyaWRhZCB5IHByZXNlcnZhY2nvv71uCmIpIGNvbnZlcnRpciBsYSBvYnJhIGEgb3Ryb3MgZm9ybWF0b3Mgc2kgZnVlcmEgbmVjZXNhcmlvICBwYXJhIGZhY2lsaXRhciBzdSBwcmVzZXJ2YWNp77+9biB5IGFjY2VzaWJpbGlkYWQgc2luIGFsdGVyYXIgc3UgY29udGVuaWRvLgpjKSByZWFsaXphciBsYSBjb211bmljYWNp77+9biBw77+9YmxpY2EgeSBkaXNwb25lciBlbCBhY2Nlc28gbGlicmUgeSBncmF0dWl0byBhIHRyYXbvv71zIGRlIEludGVybmV0IG1lZGlhbnRlIGxhIHB1YmxpY2Fjae+/vW4gZGUgbGEgb2JyYSBiYWpvIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgc2VsZWNjaW9uYWRhIHBvciBlbCBwcm9waW8gYXV0b3IuCgoKRW4gY2FzbyBxdWUgZWwgYXV0b3IgaGF5YSBkaWZ1bmRpZG8geSBkYWRvIGEgcHVibGljaWRhZCBhIGxhIG9icmEgZW4gZm9ybWEgcHJldmlhLCAgcG9kcu+/vSBzb2xpY2l0YXIgdW4gcGVy77+9b2RvIGRlIGVtYmFyZ28gc29icmUgbGEgZGlzcG9uaWJpbGlkYWQgcO+/vWJsaWNhIGRlIGxhIG1pc21hLCBlbCBjdWFsIGNvbWVuemFy77+9IGEgcGFydGlyIGRlIGxhIGFjZXB0YWNp77+9biBkZSBlc3RlIGRvY3VtZW50byB5IGhhc3RhIGxhIGZlY2hhIHF1ZSBpbmRpcXVlIC4KCkVsIGF1dG9yIGFzZWd1cmEgcXVlIGxhIG9icmEgbm8gaW5mcmlnZSBuaW5n77+9biBkZXJlY2hvIHNvYnJlIHRlcmNlcm9zLCB5YSBzZWEgZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIG8gY3VhbHF1aWVyIG90cm8uCgpFbCBhdXRvciBnYXJhbnRpemEgcXVlIHNpIGVsIGRvY3VtZW50byBjb250aWVuZSBtYXRlcmlhbGVzIGRlIGxvcyBjdWFsZXMgbm8gdGllbmUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCAgaGEgb2J0ZW5pZG8gZWwgcGVybWlzbyBkZWwgcHJvcGlldGFyaW8gZGUgbG9zIGRlcmVjaG9zIGRlIGF1dG9yLCB5IHF1ZSBlc2UgbWF0ZXJpYWwgY3V5b3MgZGVyZWNob3Mgc29uIGRlIHRlcmNlcm9zIGVzdO+/vSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyB5IHJlY29ub2NpZG8gZW4gZWwgdGV4dG8gbyBjb250ZW5pZG8gZGVsIGRvY3VtZW50byBkZXBvc2l0YWRvIGVuIGVsIFJlcG9zaXRvcmlvLgoKRW4gb2JyYXMgZGUgYXV0b3Lvv71hIG3vv71sdGlwbGUgL3NlIHByZXN1bWUvIHF1ZSBlbCBhdXRvciBkZXBvc2l0YW50ZSBkZWNsYXJhIHF1ZSBoYSByZWNhYmFkbyBlbCBjb25zZW50aW1pZW50byBkZSB0b2RvcyBsb3MgYXV0b3JlcyBwYXJhIHB1YmxpY2FybGEgZW4gZWwgUmVwb3NpdG9yaW8sIHNpZW5kbyDvv71zdGUgZWwg77+9bmljbyByZXNwb25zYWJsZSBmcmVudGUgYSBjdWFscXVpZXIgdGlwbyBkZSByZWNsYW1hY2nvv71uIGRlIGxvcyBvdHJvcyBjb2F1dG9yZXMuCgpFbCBhdXRvciBzZXLvv70gcmVzcG9uc2FibGUgZGVsIGNvbnRlbmlkbyBkZSBsb3MgZG9jdW1lbnRvcyBxdWUgZGVwb3NpdGEuIExhIFVERUxBUiBubyBzZXLvv70gcmVzcG9uc2FibGUgcG9yIGxhcyBldmVudHVhbGVzIHZpb2xhY2lvbmVzIGFsIGRlcmVjaG8gZGUgcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIHF1ZSBwdWVkYSBpbmN1cnJpciBlbCBhdXRvci4KCkFudGUgY3VhbHF1aWVyIGRlbnVuY2lhIGRlIHZpb2xhY2nvv71uIGRlIGRlcmVjaG9zIGRlIHByb3BpZWRhZCBpbnRlbGVjdHVhbCwgbGEgVURFTEFSICBhZG9wdGFy77+9IHRvZGFzIGxhcyBtZWRpZGFzIG5lY2VzYXJpYXMgcGFyYSBldml0YXIgbGEgY29udGludWFjae+/vW4gZGUgZGljaGEgaW5mcmFjY2nvv71uLCBsYXMgcXVlIHBvZHLvv71uIGluY2x1aXIgZWwgcmV0aXJvIGRlbCBhY2Nlc28gYSBsb3MgY29udGVuaWRvcyB5L28gbWV0YWRhdG9zIGRlbCBkb2N1bWVudG8gcmVzcGVjdGl2by4KCkxhIG9icmEgc2UgcG9uZHLvv70gYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28gYSB0cmF277+9cyBkZSBsYXMgbGljZW5jaWFzIENyZWF0aXZlIENvbW1vbnMsIGVsIGF1dG9yIHBvZHLvv70gc2VsZWNjaW9uYXIgdW5hIGRlIGxhcyA2IGxpY2VuY2lhcyBkaXNwb25pYmxlczoKCgpBdHJpYnVjae+/vW4gKENDIC0gQnkpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgc2llbXByZSBxdWUgc2UgcmVjb25vemNhIGFsIGF1dG9yLgoKQXRyaWJ1Y2nvv71uIO+/vSBDb21wYXJ0aXIgSWd1YWwgKENDIC0gQnktU0EpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBpbmNsdXNvIGNvbiBmaW5lcyBjb21lcmNpYWxlcywgcGVybyBsYSBkaXN0cmlidWNp77+9biBkZSBsYXMgb2JyYXMgZGVyaXZhZGFzIGRlYmUgaGFjZXJzZSBtZWRpYW50ZSB1bmEgbGljZW5jaWEgaWTvv71udGljYSBhIGxhIGRlIGxhIG9icmEgb3JpZ2luYWwsIHJlY29ub2NpZW5kbyBhIGxvcyBhdXRvcmVzLgoKQXRyaWJ1Y2nvv71uIO+/vSBObyBDb21lcmNpYWwgKENDIC0gQnktTkMpOiBQZXJtaXRlIHVzYXIgbGEgb2JyYSB5IGdlbmVyYXIgb2JyYXMgZGVyaXZhZGFzLCBzaWVtcHJlIHkgY3VhbmRvIGVzb3MgdXNvcyBubyB0ZW5nYW4gZmluZXMgY29tZXJjaWFsZXMsIHJlY29ub2NpZW5kbyBhbCBhdXRvci4KCkF0cmlidWNp77+9biDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1ORCk6IFBlcm1pdGUgZWwgdXNvIGRlIGxhIG9icmEsIGluY2x1c28gY29uIGZpbmVzIGNvbWVyY2lhbGVzLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkF0cmlidWNp77+9biDvv70gTm8gQ29tZXJjaWFsIO+/vSBDb21wYXJ0aXIgSWd1YWwgKENDIO+/vSBCeS1OQy1TQSk6IFBlcm1pdGUgdXNhciBsYSBvYnJhIHkgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMsIHNpZW1wcmUgeSBjdWFuZG8gZXNvcyB1c29zIG5vIHRlbmdhbiBmaW5lcyBjb21lcmNpYWxlcyB5IGxhIGRpc3RyaWJ1Y2nvv71uIGRlIGxhcyBvYnJhcyBkZXJpdmFkYXMgc2UgaGFnYSBtZWRpYW50ZSBsaWNlbmNpYSBpZO+/vW50aWNhIGEgbGEgZGUgbGEgb2JyYSBvcmlnaW5hbCwgcmVjb25vY2llbmRvIGEgbG9zIGF1dG9yZXMuCgpBdHJpYnVjae+/vW4g77+9IE5vIENvbWVyY2lhbCDvv70gU2luIERlcml2YWRhcyAoQ0MgLSBCeS1OQy1ORCk6IFBlcm1pdGUgdXNhciBsYSBvYnJhLCBwZXJvIG5vIHNlIHBlcm1pdGUgZ2VuZXJhciBvYnJhcyBkZXJpdmFkYXMgeSBubyBzZSBwZXJtaXRlIHVzbyBjb24gZmluZXMgY29tZXJjaWFsZXMsIGRlYmllbmRvIHJlY29ub2NlciBhbCBhdXRvci4KCkxvcyB1c29zIHByZXZpc3RvcyBlbiBsYXMgbGljZW5jaWFzIGluY2x1eWVuIGxhIGVuYWplbmFjae+/vW4sIHJlcHJvZHVjY2nvv71uLCBjb211bmljYWNp77+9biwgcHVibGljYWNp77+9biwgZGlzdHJpYnVjae+/vW4geSBwdWVzdGEgYSBkaXNwb3NpY2nvv71uIGRlbCBw77+9YmxpY28uIExhIGNyZWFjae+/vW4gZGUgb2JyYXMgZGVyaXZhZGFzIGluY2x1eWUgbGEgYWRhcHRhY2nvv71uLCB0cmFkdWNjae+/vW4geSBlbCByZW1peC4KCkN1YW5kbyBzZSBzZWxlY2Npb25lIHVuYSBsaWNlbmNpYSBxdWUgaGFiaWxpdGUgdXNvcyBjb21lcmNpYWxlcywgZWwgZGVw77+9c2l0byBkZWJlcu+/vSBzZXIgYWNvbXBh77+9YWRvIGRlbCBhdmFsIGRlbCBqZXJhcmNhIG3vv714aW1vIGRlbCBTZXJ2aWNpbyBjb3JyZXNwb25kaWVudGUuCgoKCgoKCgoKUniversidadhttps://udelar.edu.uy/https://www.colibri.udelar.edu.uy/oai/requestmabel.seroubian@seciu.edu.uyUruguayopendoar:47712024-07-25T14:28:11.938095COLIBRI - Universidad de la Repúblicafalse
spellingShingle Detection of low dimensionality and data denoising via set estimation techniques
Aaron, Catherine
Boundary estimation
Denoising procedure
Minkowski content
status_str publishedVersion
title Detection of low dimensionality and data denoising via set estimation techniques
title_full Detection of low dimensionality and data denoising via set estimation techniques
title_fullStr Detection of low dimensionality and data denoising via set estimation techniques
title_full_unstemmed Detection of low dimensionality and data denoising via set estimation techniques
title_short Detection of low dimensionality and data denoising via set estimation techniques
title_sort Detection of low dimensionality and data denoising via set estimation techniques
topic Boundary estimation
Denoising procedure
Minkowski content
url https://hdl.handle.net/20.500.12008/22092